Iron incorporation into magnesium aluminosilicate glass network under fast laser floating zone processing

被引:11
作者
Ferreira, N. M. [1 ,2 ]
Kovalevsky, A. V. [2 ]
Valente, M. A. [1 ]
Sobolev, N. A. [1 ,3 ]
Waerenborgh, J. C. [4 ]
Costa, F. M. [1 ]
Frade, J. R. [2 ]
机构
[1] Univ Aveiro, i3N, Dept Phys, P-3810193 Aveiro, Portugal
[2] Univ Aveiro, Dept Mat & Ceram Engn, CICECO Aveiro Inst Mat, P-3810193 Aveiro, Portugal
[3] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[4] Univ Lisbon, Inst Super Tecn, Ctr Ciencias & Tecnol Nucl, P-2695066 Bobadela Lrs, Portugal
关键词
Aluminosilicate; Laser floating zone; Iron oxide; Glass electrolyte; Molten oxide electrolysis; MOSSBAUER-SPECTROSCOPY; MAGNETIC-PROPERTIES; SILICATE-GLASSES; OXIDATION; MELTS; METAL;
D O I
10.1016/j.ceramint.2015.10.150
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Magnesium aluminosilicate glasses were proposed as molten electrolyte for iron pyroelectrolysis, an alternative electrometallurgical technique offering environmental and economic advantages over traditional steelmaking. This work focuses on mechanisms of iron incorporation in the glass network and related effects on physical properties. The study was performed on amorphous Fe-containing glass fibres, grown by laser floating zone in strongly non-equilibrium conditions, to retain frozen-in states characteristic for glass electrolyte at high temperatures. Up to 4 mol% content the iron cations possess predominantly 2+ oxidation state, act mostly as a network modifier and are distributed as isolated ions in the glass network. Presence of magnetic exchange interactions and paramagnetic resonance signal at g similar to 2.0 in the case of higher iron contents suggest progressive clustering of iron cations. The observed clustering and concomitant increase in the electrical conductivity indicate possible appearance of redox-driven hopping conductivity, acting as an electronic contribution to charge transport. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
引用
收藏
页码:2693 / 2698
页数:6
相关论文
共 36 条
[1]   Structural study of sol-gel silicate glasses by IR and Raman spectroscopies [J].
Aguiar, H. ;
Serra, J. ;
Gonzalez, P. ;
Leon, B. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2009, 355 (08) :475-480
[2]  
[Anonymous], 2005, Silicate glasses and melts: properties and structure
[3]   On the oxide ion conductivity of potassium doped strontium silicates [J].
Bayliss, Ryan D. ;
Cook, Stuart N. ;
Fearn, Sarah ;
Kilner, John A. ;
Greaves, Colin ;
Skinner, Stephen J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (09) :2999-3005
[4]   Low-frequency Raman scattering of magnesium aluminosilicate glasses and glass-ceramics [J].
Chuvaeva, TI ;
Dymshits, OS ;
Petrov, VI ;
Tsenter, MY ;
Shashkin, AV ;
Zhilin, AA ;
Golubkov, VV .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2001, 282 (2-3) :306-316
[5]   Coordination and RedOx ratio of iron in sodium-silicate glasses [J].
Dunaeva, E. S. ;
Uspenskaya, I. A. ;
Pokholok, K. V. ;
Minin, V. V. ;
Efimov, N. N. ;
Ugolkova, E. A. ;
Brunet, E. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (23) :3089-3095
[6]  
DYAR MD, 1987, AM MINERAL, V72, P792
[7]  
DYAR MD, 1985, AM MINERAL, V70, P304
[8]   Optical and structural investigations on iron-containing phosphate glasses [J].
Elisa, M. ;
Iordanescu, R. ;
Sava, B. A. ;
Aldica, G. ;
Kuncser, V. ;
Valsangiacom, C. ;
Schinteie, G. ;
Nastase, F. ;
Nastase, C. ;
Bercu, V. ;
Volceanov, A. ;
Peretz, S. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (06) :1563-1570
[9]  
Fanderlick I., 1991, SILICA GLASS ITS APP
[10]   Prospects and challenges of iron pyroelectrolysis in magnesium aluminosilicate melts near minimum liquidus temperature [J].
Ferreira, N. M. ;
Kovalevsky, A. V. ;
Mikhalev, S. M. ;
Costa, F. M. ;
Frade, J. R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (14) :9313-9325