A parameter uniform difference scheme for the parameterized singularly perturbed problem with integral boundary condition

被引:20
作者
Kudu, Mustafa
机构
[1] Department of Mathematics, Faculty of Arts and Sciences, Erzincan University, Erzincan
关键词
Singular perturbation; Finite difference scheme; Uniform convergence; Parameterized problem; Bakhvalov mesh; Integral boundary condition; NUMERICAL-SOLUTION; MESHES;
D O I
10.1186/s13662-018-1620-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a uniform finite difference method on a Bakhvalov mesh to solve a quasilinear first order parameterized singularly perturbed problem with integral boundary conditions. Uniform first order error estimates in the discrete maximum norm have been established. Numerical results that demonstrate the sharpness of our theoretical analysis are presented.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
Ahmad B, 2005, DYNAM CONT DIS SER A, V12, P289
[2]   A numerical treatment for singularly perturbed differential equations with integral boundary condition [J].
Amiraliyev, G. M. ;
Amiraliyeva, I. G. ;
Kudu, Mustafa .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) :574-582
[3]   Uniform difference method for a parameterized singular perturbation problem [J].
Amiraliyev, G. M. ;
Kudu, Mustafa ;
Duru, Hakki .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) :89-100
[4]   A note on a parameterized singular perturbation problem [J].
Amiraliyev, GM ;
Duru, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) :233-242
[5]   The convergence of a finite difference method on layer-adapted mesh for a singularly perturbed system [J].
Amiraliyev, GM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (03) :1023-1034
[6]   Uniform difference method for parameterized singularly perturbed delay differential equations [J].
Amiraliyeva, I. G. ;
Amiraliyev, G. M. .
NUMERICAL ALGORITHMS, 2009, 52 (04) :509-521
[7]  
[Anonymous], 2000, ROBUST COMPUTATIONAL
[8]  
[Anonymous], 2002, UKR MATH J+
[9]  
[Anonymous], 1991, UKRAIN MAT ZH SSR
[10]  
Bakhvalov NS., 1969, USSR Comput. Math. Math. Phys, V9, P139, DOI [10.1016/0041-5553(69)90038-X, DOI 10.1016/0041-5553(69)90038-X]