Characterisation of the crack tip plastic zone in fatigue via synchrotron X-ray diffraction

被引:6
作者
Carrera, Manuel [1 ,2 ]
Cruces, Alejandro S. [1 ]
Kelleher, Joseph F. [3 ]
Tai, Yee-Han [4 ]
Yates, John R. [5 ]
Withers, Philip J. [6 ]
Lopez-Crespo, Pablo [1 ]
机构
[1] Univ Malaga, Dept Civil & Mat Engn, Malaga 29071, Spain
[2] Bettergy SL, Malaga, Spain
[3] Rutherford Appleton Lab, ISIS, Didcot, Oxon, England
[4] Rolls Royce PLC, Derby, England
[5] Sheffield Fracture Mech, Buxton, Derby, England
[6] Univ Manchester, Henry Royce Inst, Dept Mat, Manchester, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
bainitic steel; fatigue plastic zone; synchrotron X-ray diffraction; NUMERICAL-ANALYSIS; STRAIN FIELDS; GROWTH-RATE; STRESS; SIZE; CLOSURE; TOMOGRAPHY; PLATES; MODEL; BULK;
D O I
10.1111/ffe.13705
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper describes a new methodology for characterising the plastic zone ahead of a fatigue crack. This methodology is applied to a set of experimental data obtained by synchrotron X-ray diffraction on a bainitic steel compact tension specimen. The methodology is based on generating the equivalent Von Mises strain field from the X-ray experimental elastic strain maps. Based on the material response, a threshold is then applied on the equivalent strain maps to identify the size and shape of the plastic zone. The experimental plastic zone lies between the plane strain and plane stress Westergaard's bounds but closer to the plane strain theoretical prediction confirming that the volume analyzed is predominantly subjected to plane strain conditions. However, the observed plastic zone has a somewhat flatter shape, extending further from the crack plane but less extended in the crack growing direction.
引用
收藏
页码:2086 / 2098
页数:13
相关论文
共 68 条
[1]  
Akkiraju N., 1995, P 1 INT COMP GEOM SO, V63
[2]  
Anderson TL, 2005, FRACTURE MECH FUNDAM
[3]   Fatigue crack growth versus plastic CTOD in the 304L stainless steel [J].
Antunes, F., V ;
Ferreira, M. S. C. ;
Branco, R. ;
Prates, P. ;
Cardin, C. ;
Sarrazin-Baudoux, C. .
ENGINEERING FRACTURE MECHANICS, 2019, 214 :487-503
[4]   Fatigue crack growth in the 2050-T8 aluminium alloy [J].
Antunes, F. V. ;
Serrano, S. ;
Branco, R. ;
Prates, P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2018, 115 :79-88
[5]   A numerical analysis of CTOD in constant amplitude fatigue crack growth [J].
Antunes, F. V. ;
Rodrigues, S. M. ;
Branco, R. ;
Camas, D. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2016, 85 :45-55
[7]   THE FORM OF CRACK TIP PLASTIC ZONES [J].
BANKS, TM ;
GARLICK, A .
ENGINEERING FRACTURE MECHANICS, 1984, 19 (03) :571-581
[8]  
Bannantine J.A., 1990, Fundamentals of Metal Fatigue Analysis
[9]   Neutron and X-ray diffraction studies and cohesive interface model of the fatigue crack deformation behavior [J].
Barabash, Rozaliya ;
Gao, Yanfei ;
Sun, Yinan ;
Lee, Soo Yeol ;
Choo, Hahn ;
Liaw, Peter K. ;
Brown, Donald W. ;
Ice, Gene E. .
PHILOSOPHICAL MAGAZINE LETTERS, 2008, 88 (08) :553-565
[10]   Advanced analysis of crack tip plastic zone under cyclic loading [J].
Besel, Michael ;
Breitbarth, Eric .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 93 :92-108