Quasiconcave Solutions to Elliptic Problems in Convex Rings

被引:50
作者
Bianchini, Chiara [1 ]
Longinetti, Marco [2 ]
Salani, Paolo [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[2] Univ Florence, Dipartimento Ingn Agr & Forestale, I-50139 Florence, Italy
关键词
convexity; level sets; elliptic equations; quasiconcave envelope; Minkowski addition; PARTIAL-DIFFERENTIAL EQUATIONS; VISCOSITY SOLUTIONS; LEVEL SETS;
D O I
10.1512/iumj.2009.58.3539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the convexity of level sets of solutions to general elliptic equations in a convex ring Q. In particular, if u is a classical solution which has constant (distinct) values on the two connected components of partial derivative Omega, we consider its quasi-concave envelope u* (i.e., the function whose superlevel sets are the convex envelopes of those of u) and we find suitable assumptions which force u* to be a subsolution of the equation. If a comparison principle holds, this yields u = u* and then u is quasi-concave.
引用
收藏
页码:1565 / 1589
页数:25
相关论文
共 15 条
[1]   Convex viscosity solutions and state constraints [J].
Alvarez, O ;
Lasry, JM ;
Lions, PL .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (03) :265-288
[2]  
[Anonymous], LECT NOTES MATH
[3]   On the strict concavity of the harmonic radius in dimension N ≥ 3 [J].
Cardaliaguet, P ;
Tahraoui, R .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (03) :223-240
[4]   Quasi-concave envelope of a function and convexity of level sets of solutions to elliptic equations [J].
Colesanti, A ;
Salani, P .
MATHEMATISCHE NACHRICHTEN, 2003, 258 :3-15
[5]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[6]  
CUOGHI P, 2006, ELECT J DIFFERENTIAL
[7]   Quasi-concavity for semilinear elliptic equations with non-monotone and anisotropic nonlinearities [J].
Greco, Antonio .
BOUNDARY VALUE PROBLEMS, 2006, 2006 (1)
[8]  
JENSEN RR, 1998, P INT C MATH 3 BERL, V3, P31
[9]   Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations [J].
Kawohl, B ;
Kutev, N .
ARCHIV DER MATHEMATIK, 1998, 70 (06) :470-478
[10]  
KAWOHL B, 1986, GEOMETRICAL PROPERTI, P25