NEW WORST-CASE UPPER BOUND FOR COUNTING EXACT SATISFIABILITY

被引:1
作者
Zhou, Junping [1 ]
Su, Weihua [1 ]
Wang, Jianan [1 ]
机构
[1] NE Normal Univ, Sch Comp Sci, Changchun 130117, Peoples R China
基金
中国国家自然科学基金;
关键词
#XSAT; upper bound; resolution principle; common literals principle; RANDOM CONSTRAINT SATISFACTION; ALGORITHMS; KNAPSACK;
D O I
10.1142/S0129054114500270
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The counting exact satisfiablity problem (#XSAT) is a problem that computes the number of truth assignments satisfying only one literal in each clause. This paper presents an algorithm that solves the #XSAT problem in O(1.1995(n)), which is faster than the best algorithm running in O(1.2190(n)), where n denotes the number of variables. To increase the efficiency of the algorithm, a new principle, called common literals principle, is addressed to simplify formulae. This allows us to further eliminate literals. In addition, we firstly apply the resolution principles into solving #XSAT problem, and therefore it improves the efficiency of the algorithm further.
引用
收藏
页码:667 / 678
页数:12
相关论文
共 17 条
[1]   New algorithms for Exact Satisfiability [J].
Byskov, JM ;
Madsen, BA ;
Skjernaa, B .
THEORETICAL COMPUTER SCIENCE, 2005, 332 (1-3) :515-541
[2]   Algorithms for four variants of the exact satisfiability problem [J].
Dahllöf, V ;
Jonsson, P ;
Beigel, R .
THEORETICAL COMPUTER SCIENCE, 2004, 320 (2-3) :373-394
[3]  
Dahllöf V, 2002, SIAM PROC S, P292
[4]  
Fomin Fedor V., 2010, EXACT EXPONENTIAL AL
[5]  
Kulikov A, 2005, J MATH SCI, V126, P1195
[6]  
Li X, 2007, LECT NOTES COMPUT SC, V4484, P624
[7]   On exponential time lower bound of Knapsack under backtracking [J].
Li, Xin ;
Liu, Tian .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (16-18) :1883-1888
[8]   Derandomizing the HSSW Algorithm for 3-SAT [J].
Makino, Kazuhisa ;
Tamaki, Suguru ;
Yamamoto, Masaki .
ALGORITHMICA, 2013, 67 (02) :112-124
[9]  
Park J.D., 2002, P UAI, P388
[10]  
Porschen S, 2005, LECT NOTES COMPUT SC, V3381, P278