Optimal embeddings and compact embeddings of Bessel-potential-type spaces

被引:8
作者
Gogatishvili, Amiran [2 ]
Neves, Julio S. [1 ]
Opic, Bohumir [2 ,3 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
[2] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
[3] Tech Univ Liberec, Dept Math & Didact Math, Liberec 46117, Czech Republic
关键词
REAL INTERPOLATION; SHARP EMBEDDINGS;
D O I
10.1007/s00209-008-0395-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
First, we establish necessary and sufficient conditions for embeddings of Bessel potential spaces H-sigma X (R-n) with order of smoothness less than one, modelled upon rearrangement invariant Banach function spaces X (R-n), into generalized Holder spaces. To this end, we derive a sharp estimate of modulus of smoothness of the convolution of a function f is an element of X (R-n) with the Bessel potential kernel g(sigma), 0 < sigma < 1. Such an estimate states that if g(sigma) belongs to the associate space of X, then omega(f * g(sigma), t) less than or similar to integral(tn)(0) s(sigma/n-1) f* (s) ds for all t is an element of (0, 1) and every f is an element of X (R-n). Second, we characterize compact subsets of generalized Holder spaces and then we derive necessary and sufficient conditions for compact embeddings of Bessel potential spaces H-sigma X (R-n) into generalized Holder spaces. We apply our results to the case when X (R-n) is the Lorentz-Karamata space L-p,L-q;b (R-n). In particular, we are able to characterize optimal embeddings of Bessel potential spaces H-sigma L-p,L-q;b (R-n) into generalized Holder spaces and also compact embeddings of spaces in question. Applications cover both superlimiting and limiting cases.
引用
收藏
页码:645 / 682
页数:38
相关论文
共 40 条
  • [1] Adams RA., 2003, Pure and Applied Mathematics (Amsterdam), V2
  • [2] [Anonymous], 1989, GRAD TEXTS MATH
  • [3] [Anonymous], 2000, Lecture Notes in Math.
  • [4] Aronszajn N., 1961, ANN I FOURIER GRENOB, V11, P385
  • [5] Aronszajn N., 1963, ANN I FOURIER, V13, P211, DOI [10.5802/aif.147, DOI 10.5802/AIF.147]
  • [6] Bennett C., 1980, Diss. Math, V175, P1
  • [7] Bennett C., 1988, PURE APPL MATH, V129
  • [8] Bingham N., 1989, Regular Variation
  • [9] Brezis H., 1980, COMMUN PART DIFF EQ, V5, P773
  • [10] Calderon A.-P., 1961, P S PURE MATH, V4, P33