Accuracy of image-plane holographic tomography with filtered backprojection: random and systematic errors

被引:22
作者
Belashov, A. V. [1 ,2 ]
Petrov, N. V. [1 ]
Semenova, I. V. [2 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
[2] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
基金
俄罗斯科学基金会;
关键词
TEMPERATURE-FIELD MEASUREMENTS; PHASE MICROSCOPY; LIVE CELLS; ANGLE DATA; RECONSTRUCTION; INTERFEROMETRY; MICROTOMOGRAPHY; INTERFEROGRAMS; FLAME; ABEL;
D O I
10.1364/AO.55.000081
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper explores the concept of image-plane holographic tomography applied to the measurements of laser-induced thermal gradients in an aqueous solution of a photosensitizer with respect to the reconstruction accuracy of three-dimensional variations of the refractive index. It uses the least-squares estimation algorithm to reconstruct refractive index variations in each holographic projection. Along with the bitelecentric optical system, transferring focused projection to the sensor plane, it facilitates the elimination of diffraction artifacts and noise suppression. This work estimates the influence of typical random and systematic errors in experiments and concludes that random errors such as accidental measurement errors or noise presence can be significantly suppressed by increasing the number of recorded digital holograms. On the contrary, even comparatively small systematic errors such as a displacement of the rotation axis projection in the course of a reconstruction procedure can significantly distort the results. (C) 2015 Optical Society of America
引用
收藏
页码:81 / 88
页数:8
相关论文
共 51 条
[1]   Digital holographic micro-interferometry of nonradiative transitions in biological specimens [J].
Belashov, A. V. ;
Petrov, N. V. ;
Semenova, I. V. ;
Vasyutinskii, O. S. .
OPTICAL METHODS FOR INSPECTION, CHARACTERIZATION, AND IMAGING OF BIOMATERIALS II, 2015, 9529
[2]   Holographic monitoring of spatial distributions of singlet oxygen in water [J].
Belashov, A. V. ;
Bel'tyukova, D. M. ;
Vasyutinskii, O. S. ;
Petrov, N. V. ;
Semenova, I. V. ;
Chupov, A. S. .
TECHNICAL PHYSICS LETTERS, 2014, 40 (12) :1134-1135
[3]   Cell refractive index tomography by digital holographic microscopy [J].
Charrière, F ;
Marian, A ;
Montfort, F ;
Kuehn, J ;
Colomb, T ;
Cuche, E ;
Marquet, P ;
Depeursinge, C .
OPTICS LETTERS, 2006, 31 (02) :178-180
[4]   Living specimen tomography by digital holographic microscopy:: morphometry of testate amoeba [J].
Charriere, Florian ;
Pavillon, Nicolas ;
Colomb, Tristan ;
Depeursinge, Christian ;
Heger, Thierry J. ;
Mitchell, Edward A. D. ;
Marquet, Pierre ;
Rappaz, Benjamin .
OPTICS EXPRESS, 2006, 14 (16) :7005-7013
[5]   Tomographic phase microscopy [J].
Choi, Wonshik ;
Fang-Yen, Christopher ;
Badizadegan, Kamran ;
Oh, Seungeun ;
Lue, Niyom ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
NATURE METHODS, 2007, 4 (09) :717-719
[6]   Overcoming the Diffraction Limit Using Multiple Light Scattering in a Highly Disordered Medium [J].
Choi, Youngwoon ;
Yang, Taeseok Daniel ;
Fang-Yen, Christopher ;
Kang, Pilsung ;
Lee, Kyoung Jin ;
Dasari, Ramachandra R. ;
Feld, Michael S. ;
Choi, Wonshik .
PHYSICAL REVIEW LETTERS, 2011, 107 (02)
[7]  
Daily W., 2004, The Leading Edge, V23, P438, DOI [10.1190/1.1729225, DOI 10.1190/1.1729225, 10.2172/15010154, DOI 10.2172/15010154]
[8]   ONE-DIMENSIONAL TOMOGRAPHY - A COMPARISON OF ABEL, ONION-PEELING, AND FILTERED BACKPROJECTION METHODS [J].
DASCH, CJ .
APPLIED OPTICS, 1992, 31 (08) :1146-1152
[9]   High-resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples [J].
Debailleul, M. ;
Georges, V. ;
Simon, B. ;
Morin, R. ;
Haeberle, O. .
OPTICS LETTERS, 2009, 34 (01) :79-81
[10]   INVERSE-SCATTERING THEORY WITHIN THE RYTOV APPROXIMATION [J].
DEVANEY, AJ .
OPTICS LETTERS, 1981, 6 (08) :374-376