THE FEASIBILITY OF USING BLACK WIDOW PULSARS IN PULSAR TIMING ARRAYS FOR GRAVITATIONAL WAVE DETECTION

被引:13
|
作者
Bochenek, Christopher [1 ,2 ]
Ransom, Scott [1 ]
Demorest, Paul [3 ]
机构
[1] Natl Radio Astron Observ, Charlottesville, VA 22903 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Natl Radio Astron Observ, Socorro, NM 87801 USA
基金
美国国家科学基金会;
关键词
gravitational waves; pulsars: general; stars: neutron; BINARY PSR B1957+20; MILLISECOND PULSARS; VARIABILITY;
D O I
10.1088/2041-8205/813/1/L4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the past five years, approximately one-third of the 65 pulsars discovered by radio observations of Fermi unassociated sources are black widow pulsars (BWPs). BWPs are binary millisecond pulsars with companion masses ranging from 0.01 to 0.1 M-circle dot which often exhibit radio eclipses. The bloated companions in BWP systems exert small torques on the system causing the orbit to change on small but measurable timescales. Because adding parameters to a timing model reduces sensitivity to a gravitational wave (GW) signal, the need to fit many orbital frequency derivatives (OFDs) to the timing data is potentially problematic for using BWPs to detect GWs with pulsar timing arrays (PTAs). Using simulated data with up to four OFDs, we show that fitting for OFDs absorbs less than 5% of the low frequency spectrum expected from a stochastic GW background signal. Furthermore, this result does not change with orbital period. Therefore, we suggest that if timing systematics can be accounted for by modeling OFDs and is not caused by spin frequency noise, PTA experiments should include BWPs in their arrays.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Pulsar timing arrays: the promise of gravitational wave detection
    Lommen, Andrea N.
    REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (12)
  • [2] Gravitational wave research using pulsar timing arrays
    George Hobbs
    Shi Dai
    National Science Review, 2017, 4 (05) : 707 - 717
  • [3] Gravitational wave research using pulsar timing arrays
    Hobbs, George
    Dai, Shi
    NATIONAL SCIENCE REVIEW, 2017, 4 (05) : 707 - 717
  • [4] Principles of Gravitational-Wave Detection with Pulsar Timing Arrays
    Maiorano, Michele
    De Paolis, Francesco
    Nucita, Achille A.
    SYMMETRY-BASEL, 2021, 13 (12):
  • [5] Towards robust gravitational wave detection with pulsar timing arrays
    Cornish, Neil J.
    Sampson, Laura
    PHYSICAL REVIEW D, 2016, 93 (10)
  • [6] Gravitational-Wave Detection Using Pulsars: Status of the Parkes Pulsar Timing Array Project
    Hobbs, G. B.
    Bailes, M.
    Bhat, N. D. R.
    Burke-Spolaor, S.
    Champion, D. J.
    Coles, W.
    Hotan, A.
    Jenet, F.
    Kedziora-Chudczer, L.
    Khoo, J.
    Lee, K. J.
    Lommen, A.
    Manchester, R. N.
    Reynolds, J.
    Sarkissian, J.
    van Straten, W.
    To, S.
    Verbiest, J. P. W.
    Yardley, D.
    You, X. P.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2009, 26 (02): : 103 - 109
  • [7] Prospects for gravitational-wave detection and supermassive black hole astrophysics with pulsar timing arrays
    Ravi, V.
    Wyithe, J. S. B.
    Shannon, R. M.
    Hobbs, G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 447 (03) : 2772 - 2783
  • [8] Gravitational wave sources for pulsar timing arrays
    Bian, Ligong
    Ge, Shuailiang
    Shu, Jing
    Wang, Bo
    Yang, Xing-Yu
    Zong, Junchao
    PHYSICAL REVIEW D, 2024, 109 (10)
  • [9] Gravitational-wave Statistics for Pulsar Timing Arrays: Examining Bias from Using a Finite Number of Pulsars
    Johnson, Aaron D.
    Vigeland, Sarah J.
    Siemens, Xavier
    Taylor, Stephen R.
    ASTROPHYSICAL JOURNAL, 2022, 932 (02):
  • [10] OPTIMAL STRATEGIES FOR CONTINUOUS GRAVITATIONAL WAVE DETECTION IN PULSAR TIMING ARRAYS
    Ellis, J. A.
    Siemens, X.
    Creighton, J. D. E.
    ASTROPHYSICAL JOURNAL, 2012, 756 (02):