First-principles calculations of an asymmetric MoO2/graphene nanocomposite as the anode material for lithium-ion batteries

被引:4
作者
Zhang, Qiuyu [1 ]
Zhu, Dongyang [1 ]
Li, Xiaowei [1 ]
Zhang, Yihe [1 ]
机构
[1] China Univ Geosci Beijing, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmet Minerals & So, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE; HIGH-CAPACITY; LI DIFFUSION; MOO2; GRAPHENE;
D O I
10.1039/d0ra07690b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Previous work on the synthesis and preparation of MoO2/graphene nanocomposites (MoO2/G) indicates that MoO2/G is a good anode material for lithium-ion batteries (LIBS). In this work, we used larger super-cells than those used previously to theoretically construct an asymmetric MoO2/G nanocomposite with smaller lattice mismatch. We then calculated the structural, electronic and Li atom diffusion properties of MoO2/G using first-principles calculations based on density functional theory. The results show that asymmetric MoO2/G has metallic properties, good stability and a low Li atom diffusion barrier because of the charge transfer induced by van der Waals interactions. The Li diffusion barriers in the interlayer of MoO2/G are in the range of 0.02-0.29 eV, depending on the relative positions of the Li atom and the MoO2 and the C atoms in the graphene layer. The Li diffusion barriers on the outside layers of the MoO2/G nanocomposite are smaller than those of its pristine materials (MoO2 and graphene). These results are consistent with experimental results. The adsorption of Li atoms in the interlayer of the nanocomposite further promotes the adsorption of Li atoms on the outside sites of the MoO2 layer. Hence, the specific capacity of the MoO2/G nanocomposite is larger than 1682 mA h g(-1). These properties all indicate that MoO2/G is a good anode material for LIBS.
引用
收藏
页码:43312 / 43318
页数:7
相关论文
共 50 条
  • [31] α-graphyne as a promising anode material for Na-ion batteries: a first-principles study
    Singh, Tavinder
    Choudhuri, Jyoti Roy
    Rana, Malay Kumar
    NANOTECHNOLOGY, 2023, 34 (04)
  • [32] Nanocomposite SnO2-Se thin film as anode material for lithium-ion batteries
    Ding, Xing-Le
    Sun, Qian
    Lu, Fang
    Fu, Zheng-Wen
    JOURNAL OF POWER SOURCES, 2012, 216 : 117 - 123
  • [33] Electrochemical lithium storage of a ZnFe2O4/graphene nanocomposite as an anode material for rechargeable lithium ion batteries
    Rai, Alok Kumar
    Kim, Sungjin
    Gim, Jihyeon
    Alfaruqi, Muhammad Hilmy
    Mathew, Vinod
    Kim, Jaekook
    RSC ADVANCES, 2014, 4 (87): : 47087 - 47095
  • [34] First-Principle Study of a ZnS/Graphene Heterostructure as a Promising Anode Material for Lithium-Ion Batteries
    Feng, Shihao
    Wang, Zhixing
    Guo, Huajun
    Li, Xinhai
    Yan, Guochun
    Wang, Jiexi
    ENERGY & FUELS, 2022, 36 (01) : 677 - 683
  • [35] High specific capacity of TiO2-graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window
    Cai, Dandan
    Lian, Peichao
    Zhu, Xuefeng
    Liang, Shuzhao
    Yang, Weishen
    Wang, Haihui
    ELECTROCHIMICA ACTA, 2012, 74 : 65 - 72
  • [36] CuBr assisted synthesis of bilayer graphene as anode material for lithium-ion batteries
    Wang, Li
    Tang, Qiwei
    Li, Xiaozeng
    Qin, Xue
    MATERIALS LETTERS, 2013, 106 : 356 - 359
  • [37] Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries
    Qiu, Danfeng
    Xu, Zijing
    Zheng, Mingbo
    Zhao, Bin
    Pan, Lijia
    Pu, Lin
    Shi, Yi
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (05) : 1889 - 1892
  • [38] Role of graphene-based nanocomposites as anode material for Lithium-ion batteries
    Khan, Bakht Mand
    Oh, Won Chun
    Nuengmatch, Prawit
    Ullah, Kefayat
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2023, 287
  • [39] Graphene anchored with mesoporous NiO nanoplates as anode material for lithium-ion batteries
    Danfeng Qiu
    Zijing Xu
    Mingbo Zheng
    Bin Zhao
    Lijia Pan
    Lin Pu
    Yi Shi
    Journal of Solid State Electrochemistry, 2012, 16 : 1889 - 1892
  • [40] Phosphorene as an anode material for Na-ion batteries: a first-principles study
    Kulish, Vadym V.
    Malyi, Oleksandr I.
    Persson, Clas
    Wu, Ping
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (21) : 13921 - 13928