On the value of a random minimum weight steiner tree

被引:14
作者
Bollobás, B [1 ]
Gamarnik, D
Riordan, O
Sudakov, B
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[2] Univ Cambridge Trinity Coll, Cambridge CB2 1TQ, England
[3] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00493-004-0013-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a complete graph on n vertices with edge weights chosen randomly and independently from an exponential distribution with parameter 1. Fix k vertices and consider the minimum weight Steiner tree which contains these vertices. We prove that with high probability the weight of this tree is (1+o(1))(k-1)(log n-log k)/n when k =o(n) and n-->infinity.
引用
收藏
页码:187 / 207
页数:21
相关论文
共 18 条
[1]   The ζ(2) limit in the random assignment problem [J].
Aldous, DJ .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (04) :381-418
[2]  
[Anonymous], P CAMB PHILO SOC, DOI DOI 10.1017/S0305004100034095
[3]  
[Anonymous], 1960, MAGYAR TUD AKAD MAT
[4]   Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems [J].
Arora, S .
JOURNAL OF THE ACM, 1998, 45 (05) :753-782
[5]   THE STEINER PROBLEM WITH EDGE LENGTH-1 AND LENGTH-2 [J].
BERN, M ;
PLASSMANN, P .
INFORMATION PROCESSING LETTERS, 1989, 32 (04) :171-176
[6]   Random minimum length spanning trees in regular graphs [J].
Beveridge, A ;
Frieze, A ;
McDiarmid, C .
COMBINATORICA, 1998, 18 (03) :311-333
[7]  
BOLLOBAS R, 2001, RANDOM GRAPHS
[8]   Improved non-approximability results for minimum vertex cover with density constraints [J].
Clementi, AEF ;
Trevisan, L .
THEORETICAL COMPUTER SCIENCE, 1999, 225 (1-2) :113-128
[9]   THE EXPECTED LENGTH OF A SHORTEST-PATH [J].
DAVIS, R ;
PRIEDITIS, A .
INFORMATION PROCESSING LETTERS, 1993, 46 (03) :135-141
[10]   CORRELATION INEQUALITIES ON SOME PARTIALLY ORDERED SETS [J].
FORTUIN, CM ;
KASTELEY.PW ;
GINIBRE, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 22 (02) :89-&