Game-Theoretic Steady-State Control

被引:1
作者
Romano, Andrew R. [1 ]
Pavel, Lacra [1 ]
机构
[1] Univ Toronto, ECE Dept, Toronto, ON, Canada
来源
2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC) | 2022年
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/CDC51059.2022.9992551
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a set of autonomous agents with LTI dynamics subject to constant external disturbance. Each agent seeks to minimize a coupled cost function in steady-state subject to equality constraints. We propose a novel control methodology to solve the problem that captures much the past work done on Nash equilibrium seeking for dynamic agents. We show that using our methodology, the problem reduces to one of designing a set of decentralized stabilizing controllers. Example controller designs are provided for two cases.
引用
收藏
页码:2493 / 2499
页数:7
相关论文
共 24 条
  • [1] Alpcan T., 2005, DISTRIBUTED ALGORITH
  • [2] Bang-Jensen J, 2009, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-84800-998-1_1
  • [3] Basar T., 1998, Dynamic Noncooperative Game Theory
  • [4] Belgioioso G., 2021, SAMPLED DATA ONLINE
  • [5] Continuous-time fully distributed generalized Nash equilibrium seeking for multi-integrator agents
    Bianchi, Mattia
    Grammatico, Sergio
    [J]. AUTOMATICA, 2021, 129
  • [6] Visual Cascade Analytics of Large-Scale Spatiotemporal Data
    Deng, Zikun
    Weng, Di
    Liang, Yuxuan
    Bao, Jie
    Zheng, Yu
    Schreck, Tobias
    Xu, Mingliang
    Wu, Yingcai
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (06) : 2486 - 2499
  • [7] Fabiani F, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P548, DOI [10.23919/ECC.2019.8795607, 10.23919/ecc.2019.8795607]
  • [8] Facchinei F., 2007, FINITE DIMENSIONAL V
  • [9] A Passivity-Based Approach to Nash Equilibrium Seeking Over Networks
    Gadjov, Dian
    Pavel, Lacra
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (03) : 1077 - 1092
  • [10] Godsil C., 2001, Algebraic Graph Theory, DOI [10.1007/978-1-4613-0163-9, DOI 10.1007/978-1-4613-0163-9]