Enhancement of corrosion resistance in carbon steels using nickel-phosphorous/titanium dioxide nanocomposite coatings under high-temperature flowing water

被引:17
作者
Kim, Seunghyun [1 ]
Kim, Jeong Won [1 ]
Kim, Ji Hyun [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Mech & Nucl Engn, Dept Nucl Sci & Engn, 50 UNIST Gil, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Metal matrix composites; Chemical synthesis; Corrosion; Microstructure; NUCLEAR-POWER-PLANT; NI-P COATINGS; COMPOSITE COATINGS; ACCELERATED CORROSION; ELECTROLESS NICKEL; ELEVATED-TEMPERATURES; WEAR CHARACTERISTICS; TIO2; NANOPARTICLES; ALKALINE-SOLUTION; PHASE-STABILITY;
D O I
10.1016/j.jallcom.2016.12.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To mitigate the corrosion of carbon steels in high-temperature flowing water, we deposited Ni-P/TiO2 nanocomposite coatings, composed of a Ni-P alloy matrix with dispersed TiO2 nanoparticles. Their morphology, early-stage open-circuit voltage, weight loss, and microstructure evolution after the tests, performed in a temperature range of 125 degrees C-175 degrees C with 5 m/s flow, were investigated. The incorporation of TiO2 nanoparticles in electroless Ni-P matrix was found to change the microstructure and improve the corrosion resistance especially at 150 degrees C. At 150 degrees C, the Ni-P alloy undergoes severe corrosion with the detachment of NiO while the Ni-P/TiO2 nanocomposite coatings remain passive by the galvanic coupling of the Ni-P matrix and the nanoparticles. Based on this study, TiO2 nanoparticles are found to enhance the passivation of the Ni-P alloy and, consequently, improve corrosion resistance in high-temperature flowing water. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 61 条
[1]   Nanostructured Ni-P-TiO2 composite coatings for electrocatalytic oxidation of small organic molecules [J].
Aal, A. Abdel ;
Hassan, Hanaa B. ;
Rahim, M. A. Abdel .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 619 :17-25
[2]   Hard and corrosion resistant nanocomposite coating for Al alloy [J].
Aal, A. Abdel .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 474 (1-2) :181-187
[3]   Electrodeposition of Ni-W-Al2O3 nanocomposite coating with functionally graded microstructure [J].
Allahyarzadeh, M. H. ;
Aliofkhazraei, M. ;
Rouhaghdam, A. R. Sabour ;
Torabinejad, V. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 666 :217-226
[4]   Corrosion resistance enhancement of electroless Ni-P coating by incorporation of ultrasonically dispersed diamond nanoparticles [J].
Ashassi-Sorkhabi, Habib ;
Es'haghi, Moosa .
CORROSION SCIENCE, 2013, 77 :185-193
[5]   Structure and phase transformation behaviour of electroless Ni-P composite coatings [J].
Balaraju, JN ;
Narayanan, TSNS ;
Seshadri, SK .
MATERIALS RESEARCH BULLETIN, 2006, 41 (04) :847-860
[6]   Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits [J].
Chen, XH ;
Chen, CS ;
Xiao, HN ;
Liu, HB ;
Zhou, LP ;
Li, SL ;
Zhang, G .
TRIBOLOGY INTERNATIONAL, 2006, 39 (01) :22-28
[7]   Corrosion behavior of carbon nanotubes - Ni composite coating [J].
Chen, XH ;
Chen, CS ;
Xiao, HN ;
Cheng, FQ ;
Zhan, G ;
Yi, GJ .
SURFACE & COATINGS TECHNOLOGY, 2005, 191 (2-3) :351-356
[8]  
Cheng YH, 2014, RARE METAL MAT ENG, V43, P1025
[9]   Pourbaix diagrams for chromium, aluminum and titanium extended to high-subcritical and low-supercritical conditions [J].
Cook, William G. ;
Olive, Robert P. .
CORROSION SCIENCE, 2012, 58 :291-298
[10]   Characterization of corrosive agents in polyurethane foams for thermal insulation of pipelines [J].
de Sousa, F. V. V. ;
da Mota, R. O. ;
Quintela, J. P. ;
Vieira, M. M. ;
Margarit, I. C. P. ;
Mattos, O. R. .
ELECTROCHIMICA ACTA, 2007, 52 (27) :7780-7785