Enhancement of corrosion resistance in carbon steels using nickel-phosphorous/titanium dioxide nanocomposite coatings under high-temperature flowing water

被引:15
作者
Kim, Seunghyun [1 ]
Kim, Jeong Won [1 ]
Kim, Ji Hyun [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Sch Mech & Nucl Engn, Dept Nucl Sci & Engn, 50 UNIST Gil, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Metal matrix composites; Chemical synthesis; Corrosion; Microstructure; NUCLEAR-POWER-PLANT; NI-P COATINGS; COMPOSITE COATINGS; ACCELERATED CORROSION; ELECTROLESS NICKEL; ELEVATED-TEMPERATURES; WEAR CHARACTERISTICS; TIO2; NANOPARTICLES; ALKALINE-SOLUTION; PHASE-STABILITY;
D O I
10.1016/j.jallcom.2016.12.027
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To mitigate the corrosion of carbon steels in high-temperature flowing water, we deposited Ni-P/TiO2 nanocomposite coatings, composed of a Ni-P alloy matrix with dispersed TiO2 nanoparticles. Their morphology, early-stage open-circuit voltage, weight loss, and microstructure evolution after the tests, performed in a temperature range of 125 degrees C-175 degrees C with 5 m/s flow, were investigated. The incorporation of TiO2 nanoparticles in electroless Ni-P matrix was found to change the microstructure and improve the corrosion resistance especially at 150 degrees C. At 150 degrees C, the Ni-P alloy undergoes severe corrosion with the detachment of NiO while the Ni-P/TiO2 nanocomposite coatings remain passive by the galvanic coupling of the Ni-P matrix and the nanoparticles. Based on this study, TiO2 nanoparticles are found to enhance the passivation of the Ni-P alloy and, consequently, improve corrosion resistance in high-temperature flowing water. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 61 条
  • [1] Nanostructured Ni-P-TiO2 composite coatings for electrocatalytic oxidation of small organic molecules
    Aal, A. Abdel
    Hassan, Hanaa B.
    Rahim, M. A. Abdel
    [J]. JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2008, 619 : 17 - 25
  • [2] Hard and corrosion resistant nanocomposite coating for Al alloy
    Aal, A. Abdel
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 474 (1-2): : 181 - 187
  • [3] Electrodeposition of Ni-W-Al2O3 nanocomposite coating with functionally graded microstructure
    Allahyarzadeh, M. H.
    Aliofkhazraei, M.
    Rouhaghdam, A. R. Sabour
    Torabinejad, V.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 666 : 217 - 226
  • [4] Corrosion resistance enhancement of electroless Ni-P coating by incorporation of ultrasonically dispersed diamond nanoparticles
    Ashassi-Sorkhabi, Habib
    Es'haghi, Moosa
    [J]. CORROSION SCIENCE, 2013, 77 : 185 - 193
  • [5] Structure and phase transformation behaviour of electroless Ni-P composite coatings
    Balaraju, JN
    Narayanan, TSNS
    Seshadri, SK
    [J]. MATERIALS RESEARCH BULLETIN, 2006, 41 (04) : 847 - 860
  • [6] Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits
    Chen, XH
    Chen, CS
    Xiao, HN
    Liu, HB
    Zhou, LP
    Li, SL
    Zhang, G
    [J]. TRIBOLOGY INTERNATIONAL, 2006, 39 (01) : 22 - 28
  • [7] Corrosion behavior of carbon nanotubes - Ni composite coating
    Chen, XH
    Chen, CS
    Xiao, HN
    Cheng, FQ
    Zhan, G
    Yi, GJ
    [J]. SURFACE & COATINGS TECHNOLOGY, 2005, 191 (2-3) : 351 - 356
  • [8] Cheng YH, 2014, RARE METAL MAT ENG, V43, P1025
  • [9] Pourbaix diagrams for chromium, aluminum and titanium extended to high-subcritical and low-supercritical conditions
    Cook, William G.
    Olive, Robert P.
    [J]. CORROSION SCIENCE, 2012, 58 : 291 - 298
  • [10] Characterization of corrosive agents in polyurethane foams for thermal insulation of pipelines
    de Sousa, F. V. V.
    da Mota, R. O.
    Quintela, J. P.
    Vieira, M. M.
    Margarit, I. C. P.
    Mattos, O. R.
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (27) : 7780 - 7785