Li-ion Reaction to Improve the Rate Performance of Nanoporous Anatase TiO2 Anodes

被引:29
作者
He, Yan-Bing [1 ]
Liu, Ming [2 ]
Xu, Zheng-Long [1 ]
Zhang, Biao [1 ]
Li, Baohua [2 ]
Kang, Feiyu [2 ]
Kim, Jang-Kyo [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech Engn, Kowloon, Hong Kong, Peoples R China
[2] Tsinghua Univ, Grad Sch Shenzhen, Key Lab Thermal Management Engn & Mat, Shenzhen 518055, Peoples R China
关键词
anatase; batteries; electrochemistry; energy storage; titanium dioxide; FAST LITHIUM STORAGE; ELECTROCHEMICAL IMPEDANCE; BATTERY PERFORMANCE; INSERTION; ELECTRODE; CARBON; NANOSHEETS;
D O I
10.1002/ente.201300081
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Large initial capacity losses and low tap densities are among the major challenges to the wide-ranging application of Li ion batteries based on anatase titania (TiO2) anodes. This study reports the root causes of the capacity losses and proposes effective ways to control them. Nanoporous TiO2 microspheres with a tap density as high as 1.1 g cm(-3) are successfully prepared by using a spray drying method and a focused study is made of their electrochemical reaction kinetics. According to the results, the capacity losses are ascribed to the irreversible Li-ion interfacial storage capability that arises mainly from the high reactivity between TiO2 and the electrolyte solution. A new anode material, TiO2-Li, prepared by reacting TiO2 with Li ions delivers a 50% reduction in charge-transfer resistance and a remarkable enhancement of Li-ion diffusion coefficient by almost seven times, as compared to the neat TiO2 powders. The TiO2-Li anode presents a much lower initial capacity loss, higher rate performance, and better reversibility.
引用
收藏
页码:668 / 674
页数:7
相关论文
共 28 条
[1]   Novel porous anatase TiO2 nanorods and their high lithium electroactivity [J].
Bao, Shu-Juan ;
Bao, Qiao-Liang ;
Li, Chang-Ming ;
Dong, Zhi-Li .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :1233-1238
[2]   An electrochemical impedance spectroscopic study of the transport properties of LiNi0.75Co0.25O2 [J].
Croce, F ;
Nobili, F ;
Deptula, A ;
Lada, W ;
Tossici, R ;
D'Epifanio, A ;
Scrosati, B ;
Marassi, R .
ELECTROCHEMISTRY COMMUNICATIONS, 1999, 1 (12) :605-608
[3]   Surface film formation on electrodes in a LiCoO2/graphite cell:: A step by step XPS study [J].
Dedryvere, R. ;
Martinez, H. ;
Leroy, S. ;
Lemordant, D. ;
Bonhomme, F. ;
Biensan, P. ;
Gonbeau, D. .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :462-468
[4]   One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (21) :4120-4125
[5]   Graphene-supported anatase TiO2 nanosheets for fast lithium storage [J].
Ding, Shujiang ;
Chen, Jun Song ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Madhavi, Srinivasan ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (20) :5780-5782
[6]   Influence of Mesoporosity on Lithium-Ion Storage Capacity and Rate Performance of Nanostructured TiO2(B) [J].
Dylla, Anthony G. ;
Lee, Jonathan A. ;
Stevenson, Keith J. .
LANGMUIR, 2012, 28 (05) :2897-2903
[7]   Electrochemical characterization of LixNiyCO1-yO2 electrodes in a 1 M LiPF6 solution of the ethylene carbonate-diethyl carbonate [J].
Fey, GTK ;
Yo, WH ;
Chang, YC .
JOURNAL OF POWER SOURCES, 2002, 105 (01) :82-86
[8]   Lithium Insertion into Anatase Nanotubes [J].
Gentili, V. ;
Brutti, S. ;
Hardwick, L. J. ;
Armstrong, A. R. ;
Panero, S. ;
Bruce, P. G. .
CHEMISTRY OF MATERIALS, 2012, 24 (22) :4468-4476
[9]   Photoelectrochemical cells [J].
Grätzel, M .
NATURE, 2001, 414 (6861) :338-344
[10]   Lithium storage in carbon-coated SnO2 by conversion reaction [J].
Guo, X. W. ;
Fang, X. P. ;
Sun, Y. ;
Shen, L. Y. ;
Wang, Z. X. ;
Chen, L. Q. .
JOURNAL OF POWER SOURCES, 2013, 226 :75-81