The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration

被引:143
作者
Cartoni, Romain [1 ,2 ]
Norsworthy, Michael W. [1 ,2 ]
Bei, Fengfeng [1 ,2 ]
Wang, Chen [1 ,2 ]
Li, Siwei [1 ,2 ]
Zhang, Yiling [1 ,2 ]
Gabel, Christopher V. [4 ]
Schwarz, Thomas L. [1 ,2 ,3 ]
He, Zhigang [1 ,2 ]
机构
[1] Boston Childrens Hosp, FM Kirby Neurobiol Ctr, 300 Longwood Ave, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Neurol, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Neurobiol, Boston, MA 02115 USA
[4] Boston Univ, Sch Med, Photon Ctr, Dept Physiol & Biophys, Boston, MA 02118 USA
基金
瑞士国家科学基金会;
关键词
RETINAL GANGLION-CELLS; NEURONAL SURVIVAL; OPTIC-NERVE; GROWTH CONE; IN-VIVO; MOTILITY; AXOTOMY; INJURY; DEATH; MICE;
D O I
10.1016/j.neuron.2016.10.060
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mitochondrial transport is crucial for neuronal and axonal physiology. However, whether and how it impacts neuronal injury responses, such as neuronal survival and axon regeneration, remain largely unknown. In an established mouse model with robust axon regeneration, we show that Armcx1, a mammalian-specific gene encoding a mitochondria-localized protein, is upregulated after axotomy in this high regeneration condition. Armcx1 overexpression enhances mitochondrial transport in adult retinal ganglion cells (RGCs). Importantly, Armcx1 also promotes both neuronal survival and axon regeneration after injury, and these effects depend on its mitochondrial localization. Furthermore, Armcx1 knockdown undermines both neuronal survival and axon regeneration in the high regenerative capacity model, further supporting a key role of Armcx1 in regulating neuronal injury responses in the adult central nervous system (CNS). Our findings suggest that Armcx1 controls mitochondrial transport during neuronal repair.
引用
收藏
页码:1294 / 1307
页数:14
相关论文
共 41 条
[1]   Nerve injury signaling [J].
Abe, Namiko ;
Cavalli, Valeria .
CURRENT OPINION IN NEUROBIOLOGY, 2008, 18 (03) :276-283
[2]   Restoration of Visual Function by Enhancing Conduction in Regenerated Axons [J].
Bei, Fengfeng ;
Lee, Henry Hing Cheong ;
Liu, Xuefeng ;
Gunner, Georgia ;
Jin, Hai ;
Ma, Long ;
Wang, Chen ;
Hou, Lijun ;
Hensch, Takao K. ;
Frank, Eric ;
Sanes, Joshua R. ;
Chen, Chinfei ;
Fagiolini, Michela ;
He, Zhigang .
CELL, 2016, 164 (1-2) :219-232
[3]  
Bonfanti L, 1996, J NEUROSCI, V16, P4186
[4]   Assembly of a new growth cone after axotomy: the precursor to axon regeneration [J].
Bradke, Frank ;
Fawcett, James W. ;
Spira, Micha E. .
NATURE REVIEWS NEUROSCIENCE, 2012, 13 (03) :183-193
[5]   Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise [J].
Cartoni, R ;
Léger, B ;
Hock, MB ;
Praz, M ;
Crettenand, A ;
Pich, S ;
Ziltener, JL ;
Luthi, F ;
Dériaz, O ;
Zorzano, A ;
Gobelet, C ;
Kralli, A ;
Russell, AP .
JOURNAL OF PHYSIOLOGY-LONDON, 2005, 567 (01) :349-358
[6]   Terminal Axon Branching Is Regulated by the LKB1-NUAK1 Kinase Pathway via Presynaptic Mitochondrial Capture [J].
Courchet, Julien ;
Lewis, Tommy L., Jr. ;
Lee, Sohyon ;
Courchet, Virginie ;
Liou, Deng-Yuan ;
Aizawa, Shinichi ;
Polleux, Franck .
CELL, 2013, 153 (07) :1510-1525
[7]   Role of axonal transport in neurodegenerative diseases [J].
De Vos, Kurt J. ;
Grierson, Andrew J. ;
Ackerley, Steven ;
Miller, Christopher C. J. .
ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 :151-173
[8]   Subtype-Specific Regeneration of Retinal Ganglion Cells following Axotomy: Effects of Osteopontin and mTOR Signaling [J].
Duan, Xin ;
Qiao, Mu ;
Bei, Fengfeng ;
Kim, In-Jung ;
He, Zhigang ;
Sanes, Joshua R. .
NEURON, 2015, 85 (06) :1244-1256
[9]   Type II Cadherins Guide Assembly of a Direction-Selective Retinal Circuit [J].
Duan, Xin ;
Krishnaswamy, Arjun ;
De la Huerta, Irina ;
Sanes, Joshua R. .
CELL, 2014, 158 (04) :793-807
[10]   Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent [J].
Glater, Elizabeth E. ;
Megeath, Laura J. ;
Stowers, R. Steven ;
Schwarz, Thomas L. .
JOURNAL OF CELL BIOLOGY, 2006, 173 (04) :545-557