Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon

被引:48
作者
Astakhov, Oleksandr [1 ,2 ]
Carius, Reinhard [1 ]
Finger, Friedhelm [1 ]
Petrusenko, Yuri [2 ]
Borysenko, Valery [2 ]
Barankov, Dmytro [2 ]
机构
[1] Forschungszentrum Julich, Inst Energy Res Photovolta, D-52425 Julich, Germany
[2] Cyclotron Sci & Res Estab, Ctr Nat Sci, Kharkov Phys & Technol Inst, UA-61108 Kharkov, Ukraine
关键词
annealing; carrier lifetime; dangling bonds; electron beam effects; elemental semiconductors; energy gap; Fermi level; phosphorus; photoconductivity; semiconductor doping; semiconductor thin films; silicon; ELECTRON-SPIN-RESONANCE; A-SI-H; CONSTANT PHOTOCURRENT METHOD; THIN-FILM SILICON; METASTABLE DEFECTS; POLYMORPHOUS SILICON; ABSORPTION-SPECTRA; RECOMBINATION; PHOTOCONDUCTIVITY; IRRADIATION;
D O I
10.1103/PhysRevB.79.104205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of dangling-bond defects and the position of the Fermi level on the charge carrier transport properties in undoped and phosphorous doped thin-film silicon with structure compositions all the way from highly crystalline to amorphous is investigated. The dangling-bond density is varied reproducibly over several orders of magnitude by electron bombardment and subsequent annealing. The defects are investigated by electron-spin-resonance and photoconductivity spectroscopies. Comparing intrinsic amorphous and microcrystalline silicon, it is found that the relationship between defect density and photoconductivity is different in both undoped materials, while a similar strong influence of the position of the Fermi level on photoconductivity via the charge carrier lifetime is found in the doped materials. The latter allows a quantitative determination of the value of the transport gap energy in microcrystalline silicon. The photoconductivity in intrinsic microcrystalline silicon is, on one hand, considerably less affected by the bombardment but, on the other hand, does not generally recover with annealing of the defects and is independent from the spin density which itself can be annealed back to the as-deposited level. For amorphous silicon and material prepared close to the crystalline growth regime, the results for nonequilibrium transport fit perfectly to a recombination model based on direct capture into neutral dangling bonds over a wide range of defect densities. For the heterogeneous microcrystalline silicon, this model fails completely. The application of photoconductivity spectroscopy in the constant photocurrent mode (CPM) is explored for the entire structure composition range over a wide variation in defect densities. For amorphous silicon previously reported linear correlation between the spin density and the subgap absorption is confirmed for defect densities below 10(18) cm(-3). Beyond this defect level, a sublinear relation is found i.e., not all spin-detected defects are also visible in the CPM spectra. Finally, the evaluation of CPM spectra in defect-rich microcrystalline silicon shows complete absence of any correlation between spin-detected defects and subband gap absorption determined from CPM: a result which casts considerable doubt on the usefulness of this technique for the determination of defect densities in microcrystalline silicon. The result can be related to the inhomogeneous structure of microcrystalline silicon with its consequences on transport and recombination processes.
引用
收藏
页数:14
相关论文
共 89 条
[1]   PHOTOCONDUCTIVITY AND RECOMBINATION IN DOPED AMORPHOUS SILICON [J].
ANDERSON, DA ;
SPEAR, WE .
PHILOSOPHICAL MAGAZINE, 1977, 36 (03) :695-712
[2]   Electron spin resonance in thin film silicon after low temperature electron irradiation [J].
Astakhov, O. ;
Finger, F. ;
Carius, R. ;
Lambertz, A. ;
Petrusenko, Yu. ;
Borysenko, V. ;
Barankov, D. .
THIN SOLID FILMS, 2007, 515 (19) :7513-7516
[3]   Defects in thin film silicon at the transition from amorphous to microcrystalline structure [J].
Astakhov, O. ;
Carius, R. ;
Petrusenko, Yu. ;
Borysenk, V. ;
Barankov, D. ;
Finger, F. .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2007, 1 (02) :R77-R79
[4]  
Astakhov O, 2007, MATER RES SOC SYMP P, V989, P3
[5]   GENERATION MECHANISMS OF PARAMAGNETIC CENTERS BY GAMMA-RAY IRRADIATION AT AND NEAR THE SI/SIO2 INTERFACE [J].
AWAZU, K ;
WATANABE, K ;
KAWAZOE, H .
JOURNAL OF APPLIED PHYSICS, 1993, 73 (12) :8519-8525
[6]  
Backhausen U, 1997, MATER RES SOC SYMP P, V452, P833
[7]  
BAIA AL, 2002, J NONCRYST SOLIDS, V299, P274, DOI DOI 10.1016/S0022-3093(01)01168-1
[8]   Mobility lifetime product - A tool for correlating a-Si:H film properties and solar cell performances [J].
Beck, N ;
Wyrsch, N ;
Hof, C ;
Shah, A .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (12) :9361-9368
[9]  
BERDZHANOVA T, 2006, THIN SOLID FILMS, V511, P394, DOI DOI 10.1016/J.TSF.2005.12.114
[10]   PHOTOCONDUCTIVITY AND DARK CONDUCTIVITY OF HYDROGENATED AMORPHOUS-SILICON [J].
BEYER, W ;
HOHEISEL, B .
SOLID STATE COMMUNICATIONS, 1983, 47 (07) :573-576