Existence and nonexistence of solutions for singular quadratic quasilinear equations

被引:100
作者
Arcoya, David [1 ]
Carmona, Jose [2 ]
Leonori, Tommaso [3 ]
Martinez-Aparicio, Pedro J. [1 ]
Orsina, Luigi [4 ]
Petitta, Francesco [5 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Almeria, Dept Algebra & Anal Matemat, La Canada De San Urbano 04120, Almeria, Spain
[3] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
[4] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[5] Univ Oslo, CMA, NO-0316 Oslo, Norway
关键词
Nonlinear elliptic equations; Singular natural growth gradient terms; Large solutions; NONLINEAR ELLIPTIC-EQUATIONS; NATURAL GROWTH TERMS; PARABOLIC EQUATIONS; ASYMPTOTIC-BEHAVIOR; GRADIENT TERM; BLOW-UP; UNIQUENESS; BOUNDARY; INFINITY;
D O I
10.1016/j.jde.2009.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study both existence and nonexistence of nonnegative solutions for nonlinear elliptic problems with Singular lower order terms that have natural growth with respect to the gradient, whose model is {-Delta u + vertical bar del u vertical bar(2)/u(gamma) = f in Omega. u = 0 on partial derivative Omega. where Omega is an open bounded subset of R, gamma > 0 and f is a function which is strictly positive on every compactly contained subset of Omega. As a consequence of our main results, we prove that the condition gamma < 2 is necessary and sufficient for the existence of solutions in H-0(1) (Omega) for every sufficiently regular f as above. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:4006 / 4042
页数:37
相关论文
共 38 条
[1]  
[Anonymous], 2000, Port. Math
[2]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[3]  
[Anonymous], 2000, ADV DIFFER EQU-NY
[4]  
Arcoya D, 2008, REV MAT IBEROAM, V24, P597
[5]  
Arcoya D, 2007, ADV NONLINEAR STUD, V7, P299
[6]   UNIQUENESS OF SOLUTIONS FOR SOME ELLIPTIC EQUATIONS WITH A QUADRATIC GRADIENT TERM [J].
Arcoya, David ;
Segura de Leon, Sergio .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (02) :327-336
[7]   Singular quasilinear equations with quadratic growth in the gradient without sign condition [J].
Arcoya, David ;
Barile, Sara ;
Martinez-Aparicio, Pedro J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :401-408
[8]   LARGE SOLUTIONS OF SEMILINEAR ELLIPTIC-EQUATIONS - EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR [J].
BANDLE, C ;
MARCUS, M .
JOURNAL D ANALYSE MATHEMATIQUE, 1992, 58 :9-24
[9]  
Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[10]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347