Profile of a paleo-orogen: High topography across the present-day Basin and Range from 40 to 23 Ma

被引:86
作者
Cassel, Elizabeth J. [1 ]
Breecker, Daniel O. [2 ]
Henry, Christopher D. [3 ]
Larson, Toti E. [2 ]
Stockli, Daniel F. [2 ]
机构
[1] Univ Idaho, Dept Geol Sci, Moscow, ID 83844 USA
[2] Univ Texas Austin, Dept Geol Sci, Austin, TX 78712 USA
[3] Univ Nevada, Nevada Bur Mines & Geol, Reno, NV 89557 USA
基金
美国国家科学基金会;
关键词
WESTERN UNITED-STATES; NORTH-AMERICAN CORDILLERA; SIERRA-NEVADA; GREAT-BASIN; ELEVATION; CLIMATE; PRECIPITATION; EOCENE; CALIFORNIA; DEUTERIUM;
D O I
10.1130/G35924.1
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Records of past topography connect Earth's deep interior to the surface, reflecting the distribution of heat and mass, past crustal structure, and plate interactions. Many tectonic reconstructions of the North American Cordillera suggest the presence of an Altiplano-like plateau in the location of the modern Basin and Range, with conflicting timing and mechanisms for the onset of surface-lowering extension and orogen collapse. Here we show, through a paleotopographic profile, that from the Eocene to the Oligocene a high, broad orogen stretched across Nevada, with a distinct crest that divided a continuous westward-draining slope extending to central California from an internally drained eastern Nevada plateau. This paleo-orogen maintained demonstrably higher-than-modern elevations, reaching 3500 m in the late Oligocene. Despite the long-term high gravitational potential energy of the crust supporting this topography, surface-lowering extension did not occur until the transition to a transform margin changed the external kinematic framework of the system. Maximum surface lowering was spatially decoupled from brittle upper crustal extension, requiring a large component of mid-crustal flow.
引用
收藏
页码:1007 / 1010
页数:4
相关论文
共 42 条
[31]   Modelling late Oligocene C4 grasses and climate [J].
Lunt, Daniel J. ;
Ross, Ian ;
Hopley, Philip J. ;
Valdes, Paul J. .
PALAEOGEOGRAPHY PALAEOCLIMATOLOGY PALAEOECOLOGY, 2007, 251 (02) :239-253
[32]   An animated tectonic reconstruction of southwestern North America since 36 Ma [J].
McQuarrie, Nadine ;
Wernicke, Brian P. .
GEOSPHERE, 2005, 1 (03) :147-172
[33]   Deuterium and oxygen isotopes, paleoelevations of the Sierra Nevada, and Cenozoic climate [J].
Molnar, Peter .
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2010, 122 (7-8) :1106-1115
[34]   A Miocene to Pleistocene climate and elevation record of the Sierra Nevada (California) [J].
Mulch, A. ;
Sarna-Wojcicki, A. M. ;
Perkins, M. E. ;
Chamberlain, C. P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (19) :6819-6824
[35]   Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change [J].
Poage, MA ;
Chamberlain, CP .
AMERICAN JOURNAL OF SCIENCE, 2001, 301 (01) :1-15
[36]   Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens [J].
Poulsen, Christopher J. ;
Jeffery, M. Louise .
GEOLOGY, 2011, 39 (06) :595-598
[37]   Stable isotope-based paleoaltimetry: Theory and validation [J].
Rowley, David B. .
PALEOALTIMETRY: GEOCHEMICAL AND THERMODYNAMIC APPROACHES, 2007, 66 :23-52
[38]  
Smith M.E., 2014, GEOLOGY IN PRESS, V42, DOI [10.1130/G36025.1, DOI 10.1130/G36025.1]
[39]   The role of mantle delamination in widespread Late Cretaceous extension and magmatism in the Cordilleran orogen, western United States [J].
Wells, Michael L. ;
Hoisch, Thomas D. .
GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 2008, 120 (5-6) :515-530
[40]   Origin of high mountains in the continents: The southern Sierra Nevada [J].
Wernicke, B ;
Clayton, R ;
Ducea, M ;
Jones, CH ;
Park, S ;
Ruppert, S ;
Saleeby, J ;
Snow, JK ;
Squires, L ;
Fliedner, M ;
Jiracek, G ;
Keller, R ;
Klemperer, S ;
Luetgert, J ;
Malin, P ;
Miller, K ;
Mooney, W ;
Oliver, H ;
Phinney, R .
SCIENCE, 1996, 271 (5246) :190-193