Center-focus and Hopf bifurcation for a class of quartic Kukles-like systems

被引:0
作者
Wu, Yusen [1 ]
Xu, Changjin [2 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471023, Henan, Peoples R China
[2] Guizhou Univ Finance & Econ, Guizhou Key Lab Econ Syst Simulat, Guiyang 550004, Guizhou, Peoples R China
关键词
center-focus; Hopf bifurcation; quadratic Kukles-like systems; NILPOTENT CRITICAL-POINT; LIMIT-CYCLES;
D O I
10.1186/1687-1847-2014-245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present article, we solve the center-focus problem for a class of quartic Kukles-like systems with third-order nilpotent singularities and prove the existence of five limit cycles in the neighborhood of the origin.
引用
收藏
页数:11
相关论文
共 10 条
[1]   Generating limit cycles from a nilpotent critical point via normal forms [J].
Alvarez, MJ ;
Gasull, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (01) :271-287
[2]  
Amel'kin V.V., 1982, NONLINEAR OSCILLATIO
[3]   The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems (vol 227, pg 406, 2006) [J].
Giacomini, Hector ;
Gine, Jaume ;
Llibre, Jaume .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 232 (02) :702-702
[4]   The problem of distinguishing between a center and a focus for nilpotent and degenerate analytic systems [J].
Giacomini, Hector ;
Gine, Jaume ;
Llibre, Jaume .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 227 (02) :406-426
[5]   Bifurcation of limit cycles, classification of centers and isochronicity for a class of non-analytic quintic systems [J].
Li Feng ;
Qiu Jianlong ;
Jing Li .
NONLINEAR DYNAMICS, 2014, 76 (01) :183-197
[6]   Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system [J].
Li Feng ;
Liu Yirong ;
Li Hongwei .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2011, 81 (12) :2595-2607
[7]   ON THIRD-ORDER NILPOTENT CRITICAL POINTS: INTEGRAL FACTOR METHOD [J].
Liu, Yirong ;
Li, Jibin .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (05) :1293-1309
[8]  
Moussu R., 1982, ERGOD THEOR DYN SYST, V2, P241, DOI DOI 10.1017/S0143385700001553
[9]   The analytic and formal normal form for the nilpotent singularity [J].
Strózyna, E ;
Zoladek, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) :479-537
[10]  
Takens F., 1974, Inst. Hautes Etudes Sci. Publ. Math, V43, P47