QUOTIENTS OF ELLIPTIC CURVES OVER FINITE FIELDS

被引:2
作者
Achter, Jeffrey D. [1 ]
Wong, Siman [2 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Elliptic curves; finite fields; isogeny; moduli; monodromy; quotients;
D O I
10.1142/S1793042113500334
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix a prime l, and let F-q be a finite field with q equivalent to 1 (mod l) elements. If l > 2 and q >>(l) 1, we show that asymptotically (l - 1)(2)/2l(2) of the elliptic curves E/F-q with complete rational l-torsion are such that E/< P > does not have complete rational l-torsion for any point P is an element of E(F-q) of order l. For l = 2 the asymptotic density is 0 or 1/4, depending whether q equivalent to 1 (mod 4) or 3 (mod 4). We also show that for any l, if E/F-q has an F-q-rational point R of order l(2), then E/< lR > always has complete rational l-torsion.
引用
收藏
页码:1395 / 1412
页数:18
相关论文
共 15 条
[1]  
Achter JD, 2008, ARCH MATH, V90, P511, DOI 10.1007/s00013-008-2598-8
[2]  
[Anonymous], INTRO ARITHMETIC THE
[3]  
Deuring M., 1941, Abh. Math. Sem. Hansischen Univ, V14, P197, DOI 10.1007/BF02940746
[4]  
Fouquet M, 2002, LECT NOTES COMPUT SC, V2369, P276
[5]  
Katz N., 1999, RANDOM MATRICES FROB
[6]  
Katz N.M., 1985, Arithmetic moduli of elliptic curves, volume 108 of Annals of mathematics studies
[7]  
Kohel D.R., 1996, Endomorphism rings of elliptic curves over finite fields
[8]  
Lang S., 1983, ELLIPTIC FUNCTIONS
[9]   DIOPHANTINE EQUATIONS AND MODULAR FORMS [J].
OGG, AP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (01) :14-27
[10]   HECKE OPERATORS AND THE WEIGHT DISTRIBUTIONS OF CERTAIN CODES [J].
SCHOOF, R ;
VANDERVLUGT, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 57 (02) :163-186