Strong asymptotics inside the unit disk for Sobolev orthogonal polynomials

被引:4
作者
Berriochoa, E [1 ]
Cachafeiro, A
机构
[1] Univ Vigo, Fac Ciencias, Dept Matemat Aplicada, Orense, Spain
[2] Univ Vigo, ETS Ingn Ind, Dept Matemat, Vigo, Spain
关键词
orthogonal polynomials; Sobolev inner products; Measures on the unit circle; Szego function; Caratheodory function;
D O I
10.1016/S0898-1221(02)00145-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we give sufficient conditions in order to establish the extension of the strong asymptotics up to the boundary and inside the unit disk for Sobolev orthogonal polynomials. We consider the following Sobolev inner product on the unit circle: [f(z), g (z)]s = integral(0)(2pi) f (e(itheta))<(g(e(iθ)))over bar> dmu(0)(theta) + integral(0)(2pi) f' (e(itheta)) <(g' (e(iθ)))over bar> dmu(1) (theta), z = e(itheta), with mu(0) a finite positive Borel measure on [0, 2,pi] and mu(1) a measure in the Szego's class. On the assumption that the Caratheodory function of mu(0) and the Szego function of mu(1) have analytic extension, we prove that the asymptotic formula holds true outside the disk and it can be extended inside the disk. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:253 / 261
页数:9
相关论文
共 6 条
[1]   Strong asymptotics for the continuous Sobolev orthogonal polynomials on the unit circle [J].
Aptekarev, A ;
Berriochoa, E ;
Cachafeiro, A .
JOURNAL OF APPROXIMATION THEORY, 1999, 100 (02) :381-391
[2]  
BERRIOCHOA E, 2001, J INEQUAL APPL
[3]  
GERONIMUS LY, 1961, ORTHOGONAL POLYNORMI
[4]   Bernstein-Szego's theorem for Sobolev orthogonal polynomials [J].
Martínez-Finkelshtein, A .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (01) :73-84
[5]  
Nevai P., 1989, ACTA SCI MATH, V53, P99
[6]  
WALSH JL, 1969, AM MATH SOC C PUBL, V20