VisualMLTCGA: An Easy-to-Use Web Tool for the Visualization, Processing and Classification of Clinical and Genomic TCGA Data

被引:0
作者
Garin-Muga, Alba [1 ,2 ]
Maria Sucre, Aurora [1 ,2 ]
Torres, Jordi [1 ]
Kerexeta, Jon [1 ]
机构
[1] Vicomtech, eHlth & Biomed Applicat Area, Donostia San Sebastian 20014, Spain
[2] eHlth Grp, Biodonostia Bioengn Area, Donostia San Sebastian 20014, Spain
来源
PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF | 2020年
关键词
TCGA; Stratification; ML; Visualization; Clinical Data; Genomics; SOMATIC POINT MUTATIONS; CANCER;
D O I
10.5220/0008951804130420
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The Cancer Genome Atlas (TCGA) is a collection of freely available data of several human cancer types. TCGA contains over 2.5 petabytes of data, which includes, among others, clinical and genomic data. However, the visualization of such data is cumbersome and tiring for non-expert users. VisualMLTCGA is an intuitive and easy-to-use web tool that allows the automatic download and visualization of TCGA data and the processing of genomic data using GATK. Additionally, the tool allows to create comprehensive decision trees (DT) for prediction of outcomes from clinical and genomic TCGA data and other external datasets. VisualMLTCGA offers a simple web tool to download, process and visualize TCGA data, suitable for researchers and clinicians without any bioinformatics background.
引用
收藏
页码:413 / 420
页数:8
相关论文
共 20 条
  • [1] [Anonymous], 2019, AKVEO NGX ADMIN TYPE
  • [2] Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples
    Cibulskis, Kristian
    Lawrence, Michael S.
    Carter, Scott L.
    Sivachenko, Andrey
    Jaffe, David
    Sougnez, Carrie
    Gabriel, Stacey
    Meyerson, Matthew
    Lander, Eric S.
    Getz, Gad
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (03) : 213 - 219
  • [3] TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data
    Colaprico, Antonio
    Silva, Tiago C.
    Olsen, Catharina
    Garofano, Luciano
    Cava, Claudia
    Garolini, Davide
    Sabedot, Thais S.
    Malta, Tathiane M.
    Pagnotta, Stefano M.
    Castiglioni, Isabella
    Ceccarelli, Michele
    Bontempi, Gianluca
    Noushmehr, Houtan
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (08) : e71
  • [4] Web-TCGA: an online platform for integrated analysis of molecular cancer data sets
    Deng, Mario
    Braegelmann, Johannes
    Schultze, Joachim L.
    Perner, Sven
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [5] EASL-EORTC, CLIN PRACT GUID MAN
  • [6] MuSE: accounting for tumor heterogeneity using a sample-specific error model improves sensitivity and specificity in mutation calling from sequencing data
    Fan, Yu
    Xi, Liu
    Hughes, Daniel S. T.
    Zhang, Jianjun
    Zhang, Jianhua
    Futreal, P. Andrew
    Wheeler, David A.
    Wang, Wenyi
    [J]. GENOME BIOLOGY, 2016, 17 : 178
  • [7] GATK, 11145 GATK BP
  • [8] GATK, 24216 GATK BP
  • [9] Hothorn T., 2014, partykit: A Modular Toolkit for Recursive Partytioning in R
  • [10] VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing
    Koboldt, Daniel C.
    Zhang, Qunyuan
    Larson, David E.
    Shen, Dong
    McLellan, Michael D.
    Lin, Ling
    Miller, Christopher A.
    Mardis, Elaine R.
    Ding, Li
    Wilson, Richard K.
    [J]. GENOME RESEARCH, 2012, 22 (03) : 568 - 576