A Bennett concentration inequality and its application to suprema of empirical processes

被引:149
作者
Bousquet, O [1 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
关键词
D O I
10.1016/S1631-073X(02)02292-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce new concentration inequalities for functions on product spaces. They allow to obtain a Bennett type deviation bound for suprema of empirical processes indexed by upper bounded functions. The result is an improvement on Rio's version [6] of Talagrand's inequality [7] for equidistributed variables.
引用
收藏
页码:495 / 500
页数:6
相关论文
共 8 条
[1]  
Boucheron S, 2000, RANDOM STRUCT ALGOR, V16, P277, DOI 10.1002/(SICI)1098-2418(200005)16:3<277::AID-RSA4>3.0.CO
[2]  
2-1
[3]  
BOUCHERON S, 2001, UNPUB CONCENTRATION
[4]  
Ledoux M., 1995, ESAIM Probab. Statist., V1, P63
[5]   About the constants in Talagrand's concentration inequalities for empirical processes [J].
Massart, P .
ANNALS OF PROBABILITY, 2000, 28 (02) :863-884
[6]  
Rio E, 2001, PROBAB THEORY REL, V119, P163, DOI 10.1007/PL00008756
[7]  
RIO E, 2001, IN PRESS C HONNEUR J
[8]   New concentration inequalities in product spaces [J].
Talagrand, M .
INVENTIONES MATHEMATICAE, 1996, 126 (03) :505-563