Phase-type fitting of scale functions for spectrally negative Levy processes

被引:52
|
作者
Egami, Masahiko [1 ]
Yamazaki, Kazutoshi [2 ]
机构
[1] Kyoto Univ, Grad Sch Econ, Sakyo Ku, Kyoto 6068501, Japan
[2] Kansai Univ, Dept Math, Fac Engn Sci, Suita, Osaka 5648680, Japan
基金
日本学术振兴会;
关键词
Phase-type models; Spectrally negative Levy processes; Scale functions; DIVIDEND PROBLEM; DISTRIBUTIONS; OPTIONS; EXIT;
D O I
10.1016/j.cam.2013.12.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scale function of the spectrally negative phase-type Levy process. Its scale function admits an analytical expression and so do a number of its fluctuation identities. Motivated by the fact that the class of phase-type distributions is dense in the class of all positive-valued distributions, we propose a new approach to approximating the scale function and the associated fluctuation identities for a general spectrally negative Levy process. Numerical examples are provided to illustrate the effectiveness of the approximation method. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [41] LAST EXIT BEFORE AN EXPONENTIAL TIME FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Baurdoux, E. J.
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) : 542 - 558
  • [42] A martingale review of some fluctuation theory for spectrally negative Levy processes
    Kyprianou, AE
    Palmowski, Z
    SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 16 - 29
  • [43] Efficient phase-type fitting with aggregated traffic traces
    Panchenko, Andriy
    Thuemmler, Axel
    PERFORMANCE EVALUATION, 2007, 64 (7-8) : 629 - 645
  • [44] On taxed spectrally negative Levy processes with draw-down stopping
    Avram, Florin
    Nhat Linh Vu
    Zhou, Xiaowen
    INSURANCE MATHEMATICS & ECONOMICS, 2017, 76 : 69 - 74
  • [45] A unified approach to ruin probabilities with delays for spectrally negative Levy processes
    Lkabous, Mohamed Amine
    Renaud, Jean-Francois
    SCANDINAVIAN ACTUARIAL JOURNAL, 2019, : 711 - 728
  • [46] Fitting phase-type distributions via the EM algorithm
    Asmussen, S
    Nerman, O
    Olsson, M
    SCANDINAVIAN JOURNAL OF STATISTICS, 1996, 23 (04) : 419 - 441
  • [47] Occupation times for spectrally negative Levy processes on the last exit time
    Li, Yingqiu
    Wei, Yushao
    Peng, Zhaohui
    STATISTICS & PROBABILITY LETTERS, 2021, 175
  • [48] DRAW-DOWN PARISIAN RUIN FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Wang, Wenyuan
    Zhou, Xiaowen
    ADVANCES IN APPLIED PROBABILITY, 2020, 52 (04) : 1164 - 1196
  • [49] The excursion measure away from zero for spectrally negative Levy processes
    Pardo, J. C.
    Perez, J. L.
    Rivero, V. M.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (01): : 75 - 99
  • [50] Optimal barrier strategy for spectrally negative Levy process discounted by a class of exponential Levy processes
    Jiang, Huanqun
    ANNALS OF ACTUARIAL SCIENCE, 2018, 12 (02) : 326 - 337