Phase-type fitting of scale functions for spectrally negative Levy processes

被引:53
作者
Egami, Masahiko [1 ]
Yamazaki, Kazutoshi [2 ]
机构
[1] Kyoto Univ, Grad Sch Econ, Sakyo Ku, Kyoto 6068501, Japan
[2] Kansai Univ, Dept Math, Fac Engn Sci, Suita, Osaka 5648680, Japan
基金
日本学术振兴会;
关键词
Phase-type models; Spectrally negative Levy processes; Scale functions; DIVIDEND PROBLEM; DISTRIBUTIONS; OPTIONS; EXIT;
D O I
10.1016/j.cam.2013.12.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scale function of the spectrally negative phase-type Levy process. Its scale function admits an analytical expression and so do a number of its fluctuation identities. Motivated by the fact that the class of phase-type distributions is dense in the class of all positive-valued distributions, we propose a new approach to approximating the scale function and the associated fluctuation identities for a general spectrally negative Levy process. Numerical examples are provided to illustrate the effectiveness of the approximation method. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 30 条
[1]   On the efficient evaluation of ruin probabilities for completely monotone claim distributions [J].
Albrecher, Hansjoerg ;
Avram, Florin ;
Kortschak, Dominik .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) :2724-2736
[2]  
[Anonymous], 2007, LECT NOTES MATH
[3]  
[Anonymous], 2003, LIMIT THEOREMS STOCH, DOI DOI 10.1007/978-3-662-05265-5
[4]  
Asmussen S, 1996, SCAND J STAT, V23, P419
[5]   Russian and American put options under exponential phase-type Levy models [J].
Asmussen, S ;
Avram, F ;
Pistorius, MR .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2004, 109 (01) :79-111
[6]  
Asmussen S., 2007, J Comput Financ, V11, P79, DOI [10.21314/JCF.2007.164, DOI 10.21314/JCF.2007.164]
[7]  
Asmussen S., 2003, APPL MATH NEW YORK, V51
[8]  
Avram F, 2004, ANN APPL PROBAB, V14, P215
[9]   On the optimal dividend problem for a spectrally negative Levy process [J].
Avram, Florin ;
Palmowski, Zbigniew ;
Pistorius, Martijn R. .
ANNALS OF APPLIED PROBABILITY, 2007, 17 (01) :156-180
[10]  
Bertoin J., 1996, Cambridge Tracts in Mathematics, V121