Phase-type fitting of scale functions for spectrally negative Levy processes

被引:52
|
作者
Egami, Masahiko [1 ]
Yamazaki, Kazutoshi [2 ]
机构
[1] Kyoto Univ, Grad Sch Econ, Sakyo Ku, Kyoto 6068501, Japan
[2] Kansai Univ, Dept Math, Fac Engn Sci, Suita, Osaka 5648680, Japan
基金
日本学术振兴会;
关键词
Phase-type models; Spectrally negative Levy processes; Scale functions; DIVIDEND PROBLEM; DISTRIBUTIONS; OPTIONS; EXIT;
D O I
10.1016/j.cam.2013.12.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the scale function of the spectrally negative phase-type Levy process. Its scale function admits an analytical expression and so do a number of its fluctuation identities. Motivated by the fact that the class of phase-type distributions is dense in the class of all positive-valued distributions, we propose a new approach to approximating the scale function and the associated fluctuation identities for a general spectrally negative Levy process. Numerical examples are provided to illustrate the effectiveness of the approximation method. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 50 条
  • [1] On scale functions for Levy processes with negative phase-type jumps
    Ivanovs, Jevgenijs
    QUEUEING SYSTEMS, 2021, 98 (1-2) : 3 - 19
  • [2] The Theory of Scale Functions for Spectrally Negative Levy Processes
    Kuznetsov, Alexey
    Kyprianou, Andreas E.
    Rivero, Victor
    LEVY MATTERS II: RECENT PROGRESS IN THEORY AND APPLICATIONS: FRACTIONAL LEVY FIELDS, AND SCALE FUNCTIONS, 2012, 2061 : 97 - 186
  • [3] Evaluating scale functions of spectrally negative Levy processes
    Surya, B. A.
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (01) : 135 - 149
  • [4] ON q-SCALE FUNCTIONS OF SPECTRALLY NEGATIVE LEVY PROCESSES
    Behme, Anita
    Oechsler, David
    Schilling, Rene
    ADVANCES IN APPLIED PROBABILITY, 2023, 55 (01) : 56 - 84
  • [5] On scale functions for Lévy processes with negative phase-type jumps
    Jevgenijs Ivanovs
    Queueing Systems, 2021, 98 : 3 - 19
  • [6] Old and New Examples of Scale Functions for Spectrally Negative Levy Processes
    Hubalek, F.
    Kyprianou, E.
    SEMINAR ON STOCHASTIC ANALYSIS, RANDOM FIELDS AND APPLICATIONS VI, 2011, 63 : 119 - +
  • [7] Special, conjugate and complete scale functions for spectrally negative Levy processes
    Kyprianou, A. E.
    Rivero, V.
    ELECTRONIC JOURNAL OF PROBABILITY, 2008, 13 : 1672 - 1701
  • [8] Levy Processes, Phase-Type Distributions, and Martingales
    Asmussen, Soren
    STOCHASTIC MODELS, 2014, 30 (04) : 443 - 468
  • [9] Spectrally negative Levy processes
    FLUCTUATION THEORY FOR LEVY PROCESSES, 2007, 1897 : 95 - 113
  • [10] Local Times for Spectrally Negative Levy Processes
    Li, Bo
    Zhou, Xiaowen
    POTENTIAL ANALYSIS, 2020, 52 (04) : 689 - 711