On canonical curves and osculating spaces

被引:2
作者
Medeiros, N [1 ]
机构
[1] Univ Fed Fluminense, Inst Matemat, BR-24020005 Niteroi, RJ, Brazil
关键词
D O I
10.1016/S0022-4049(01)00073-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the geometry of a reduced canonical curve with a nondegenerate component. We prove that the other components are rational normal curves in a certain configuration. In addition, given a nonsingular point on a nondegenerate component, we analyze the relationship between the Weierstrass semigroup and the intersection divisors of the osculating spaces with the curve. We describe how these divisors vary and present an upper bound for their degrees. We study in detail the curves that attain this bound. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:267 / 285
页数:19
相关论文
共 19 条
[1]  
Arbarello E., 1985, GEOMETRY ALGEBRAIC C, VI
[2]   One-dimensional almost Gorenstein rings [J].
Barucci, V ;
Froberg, R .
JOURNAL OF ALGEBRA, 1997, 188 (02) :418-442
[3]  
Catanese, 1982, PROGR MATH, P51
[4]   Rational nodal curves with no smooth Weierstrass points [J].
Garcia, A ;
Lax, RF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (02) :407-413
[5]   WEIERSTRASS POINTS ON CERTAIN NONCLASSICAL CURVES [J].
GARCIA, A ;
VIANA, P .
ARCHIV DER MATHEMATIK, 1986, 46 (04) :315-322
[6]  
Hironaka H., 1957, MEM KYOTO, V30, P177
[7]   Non-Weierstrass numerical semigroups [J].
Komeda, J .
SEMIGROUP FORUM, 1998, 57 (02) :157-185
[9]   WEIERSTRASS SEMIGROUPS AND THE CANONICAL IDEAL OF NON-TRIGONAL CURVES [J].
OLIVEIRA, G .
MANUSCRIPTA MATHEMATICA, 1991, 71 (04) :431-450
[10]   Moduli spaces of curves with quasi-symmetric Weierstrass gap sequences [J].
Oliveira, G ;
Stohr, KO .
GEOMETRIAE DEDICATA, 1997, 67 (01) :65-82