Gevrey regularity for integro-differential operators

被引:7
作者
Albanese, Guglielmo [1 ]
Fiscella, Alessio [1 ,3 ]
Valdinoci, Enrico [1 ,2 ,4 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[2] Weierstr Inst Angew Anal & Stochast, D-10117 Berlin, Germany
[3] Univ Estadual Campinas, Dept Matemat, BR-13083859 Campinas, SP, Brazil
[4] CNR, Ist Matemat Applicata & Tecnol Informat, I-27100 Pavia, Italy
关键词
Integro-differential equations; Gevrey class; Fractional Laplacian; LEVY FLIGHTS; PATTERNS; CONTEXT;
D O I
10.1016/j.jmaa.2015.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove for some singular kernels K(x, y) that viscosity solutions of the integrodifferential equation locally belong to some Gevrey class if so does f. The fractional Laplacian equation is included in this framework as a special case. (C) 2015 Elsevier Inc. All rights reserved.integral(Rn)[u(x + y) + u(x - y) - 2u(x)] K(x, y)dy = f (x)
引用
收藏
页码:1225 / 1238
页数:14
相关论文
共 28 条
[1]  
[Anonymous], 2002, A Primer of Real Analytic Functions
[2]  
[Anonymous], 2009, Multiple Integrals in the Calculus of Variations.
[3]  
Barrios B., 2014, ANN SC NORM SUPER PI, VXIII, P1
[4]   Optimizing the encounter rate in biological interactions: Levy versus Brownian strategies [J].
Bartumeus, F ;
Catalan, J ;
Fulco, UL ;
Lyra, ML ;
Viswanathan, GM .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4
[6]  
Caffarelli L. A., 2015, ANN I H POI IN PRESS
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[8]   Regularity Results for Nonlocal Equations by Approximation [J].
Caffarelli, Luis ;
Silvestre, Luis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (01) :59-88
[9]   ON THE EVANS-KRYLOV THEOREM [J].
Caffarelli, Luis ;
Silvestre, Luis .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (01) :263-265
[10]   Convergence of Nonlocal Threshold Dynamics Approximations to Front Propagation [J].
Caffarelli, Luis A. ;
Souganidis, Panagiotis E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (01) :1-23