Genome editing for plant research and crop improvement

被引:65
|
作者
Zhan, Xiangqiang [1 ,2 ]
Lu, Yuming [3 ]
Zhu, Jian-Kang [3 ,4 ]
Botella, Jose Ramon [5 ]
机构
[1] Northwest A&F Univ, State Key Lab Crop Stress Biol Arid Areas, Xianyang 712100, Peoples R China
[2] Northwest A&F Univ, Coll Hort, Xianyang 712100, Peoples R China
[3] Chinese Acad Sci, Shanghai Ctr Plant Stress Biol, CAS Ctr Excellence Mol Plant Sci, Shanghai 200032, Peoples R China
[4] Purdue Univ, Dept Hort & Landscape Architecture, W Lafayette, IN 47907 USA
[5] Univ Queensland, Sch Agr & Food Sci, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
CRISPR; Cas; crop improvement; genome editing; plant research; DOUBLE-STRAND BREAKS; EFFICIENT TARGETED MUTAGENESIS; DNA GLYCOSYLASE/LYASE ROS1; SEQUENCE-SPECIFIC CONTROL; POTATO SOLANUM-TUBEROSUM; NUCLEIC-ACID DETECTION; REGULATORS BABY-BOOM; HOMOLOGOUS RECOMBINATION; TRANSCRIPTION ACTIVATOR; GENE MODIFICATIONS;
D O I
10.1111/jipb.13063
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel (insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
引用
收藏
页码:3 / 33
页数:31
相关论文
共 50 条
  • [41] Speciation and adaptation research meets genome editing
    Ansai, Satoshi
    Kitano, Jun
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2022, 377 (1855)
  • [42] PLANTS ON DEMAND Genome editing for plant improvement
    Gomez Mena, Concha
    METODE SCIENCE STUDIES JOURNAL, 2021, (11): : 25 - 29
  • [43] Editing Plant Genomes: a new era of crop improvement
    Petolino, Joseph F.
    Srivastava, Vibha
    Daniell, Henry
    PLANT BIOTECHNOLOGY JOURNAL, 2016, 14 (02) : 435 - 436
  • [44] Harnessing CRISPR-mediated precision genome editing technologies for crop improvement
    Xia, Lanqin
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 : S85 - S86
  • [45] Genetic and signalling pathways of dry fruit size: targets for genome editing-based crop improvement
    Hussain, Quaid
    Shi, Jiaqin
    Scheben, Armin
    Zhan, Jiepeng
    Wang, Xinfa
    Liu, Guihua
    Yan, Guijun
    King, Graham J.
    Edwards, David
    Wang, Hanzhong
    PLANT BIOTECHNOLOGY JOURNAL, 2020, 18 (05) : 1124 - 1140
  • [46] Scarless genome editing technology and its application to crop improvement
    Ikeda, Kazuya
    BREEDING SCIENCE, 2024, 74 (01) : 32 - 36
  • [47] Fruit Crop Improvement with Genome Editing, In Vitro and Transgenic Approaches
    Penna, Suprasanna
    Jain, Shri Mohan
    HORTICULTURAE, 2023, 9 (01)
  • [48] Plant genome sequencing: applications for crop improvement
    Edwards, David
    Batley, Jacqueline
    PLANT BIOTECHNOLOGY JOURNAL, 2010, 8 (01) : 2 - 9
  • [49] Advances in Crop Breeding Through Precision Genome Editing
    Nerkar, Gauri
    Devarumath, Suman
    Purankar, Madhavi
    Kumar, Atul
    Valarmathi, R.
    Devarumath, Rachayya
    Appunu, C.
    FRONTIERS IN GENETICS, 2022, 13
  • [50] Genome Editing for Improving Crop Nutrition
    Nagamine, Ai
    Ezura, Hiroshi
    FRONTIERS IN GENOME EDITING, 2022, 4