Electrically Tunable-Focusing Liquid Crystal Microlens Array with Simple Electrode

被引:11
作者
Tian, Li-Lan [1 ]
Chu, Fan [2 ]
Dou, Hu [2 ]
Li, Lei [2 ]
Wang, Qiong-Hua [1 ]
机构
[1] Beihang Univ, Sch Instrumentat & Optoelect Engn, Beijing 100191, Peoples R China
[2] Sichuan Univ, Sch Elect & Informat Engn, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
liquid crystal; simple electrode; microlens array; wide focusing range; FOCAL-LENGTH; LENS ARRAY; FIELD; DISPLAY; SYSTEM; DESIGN;
D O I
10.3390/cryst9080431
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
An electrically tunable-focusing liquid crystal (LC) microlens array exhibiting a wide-range tunable focal length is proposed. The lower substrate has strip indium tin oxide (ITO) electrodes, the upper substrate has periodic ITO electrodes with a certain gap coated on the inner surface., and an LC microlens is generated between the two strip electrodes. For each LC microlens, the gap between the top planar electrodes is directly above the center of the microlens. Unlike the conventional LC lens, the individual LC microlens is not coated with ITO electrodes on the central part of its upper and lower substrates, which helps to maintain the LC's horizontal orientation. In the voltage-off state, the focal length of the microlens array is infinity because of the homogeneous LC alignment. At a given operating voltage, an ideal gradient refractive index distribution is induced over the homogeneous LC layer, which leads to the focusing effect. The simulation result shows that the focal length of the LC microlens could be gradually drawn to 0.381 mm with a change of voltage.
引用
收藏
页数:10
相关论文
共 36 条
[1]   Optical lens with electrically variable focus using an optically hidden dielectric structure [J].
Asatryan, Karen ;
Presnyakov, Vladimir ;
Tork, Amir ;
Zohrabyan, Armen ;
Bagramyan, Aram ;
Galstian, Tigran .
OPTICS EXPRESS, 2010, 18 (13) :13981-13992
[2]   Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement [J].
Chou, Ping-Yen ;
Wu, Dui-Yi ;
Huang, Shang-Hao ;
Wang, Chun-Ping ;
Qin, Zong ;
Huang, Cheng-Ting ;
Hsieh, Po-Yuan ;
Lee, Hsin-Hseuh ;
Lin, Ting-Hsuan ;
Huang, Yi-Pai .
OPTICS EXPRESS, 2019, 27 (02) :1164-1178
[3]   A polarisation-independent blue-phase liquid crystal lens array using gradient electrodes [J].
Chu, Fan ;
Dou, Hu ;
Li, Gui-Peng ;
Song, Ya-Li ;
Li, Lei ;
Wang, Qiong-Hua .
LIQUID CRYSTALS, 2018, 45 (05) :715-720
[4]   A polarisation-independent blue-phase liquid crystal microlens using an optically hidden dielectric structure [J].
Cui, Jian-Peng ;
Fan, Hao-Xiang ;
Wang, Qiong-Hua .
LIQUID CRYSTALS, 2017, 44 (04) :643-647
[5]   Implementation of field lens arrays in beam-deflecting microlens array telescopes [J].
Duparré, J ;
Radtke, D ;
Dannberg, P .
APPLIED OPTICS, 2004, 43 (25) :4854-4861
[6]   Micro-optical 1 x 4 fiber switch for multimode fibers with 600-μm core diameters [J].
Duparré, J ;
Götz, B ;
Göring, R .
APPLIED OPTICS, 2003, 42 (34) :6889-6896
[7]   Tunable liquid crystal multifocal microlens array [J].
Francisco Algorri, Jose ;
Bennis, Noureddine ;
Urruchi, Virginia ;
Morawiak, Przemek ;
Manuel Sanchez-Pena, Jose ;
Jaroszewicz, Leszek R. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Design of hybrid micro-diffractive-refractive optical element with wide field of view for free space optical interconnections [J].
Fu, YQ ;
Kok, N ;
Bryan, A .
OPTICS EXPRESS, 2002, 10 (13) :540-549
[9]   Electrically variable liquid crystal lenses for ophthalmic distance accommodation [J].
Galstian, T. ;
Asatryan, K. ;
Presniakov, V ;
Zohrabyan, A. .
OPTICS EXPRESS, 2019, 27 (13) :18803-18817
[10]   Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment [J].
He, Ziqian ;
Lee, Yun-Han ;
Chen, Ran ;
Chanda, Debashis ;
Wu, Shin-Tson .
OPTICS LETTERS, 2018, 43 (20) :5062-5065