SUCCESSIVE ITERATIONS FOR UNIQUE POSITIVE SOLUTION OF A NONLINEAR FRACTIONAL Q-INTEGRAL BOUNDARY VALUE PROBLEM

被引:18
作者
Wang, Guotao [1 ,2 ,3 ]
Bai, Zhanbing [2 ]
Zhang, Lihong [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Linfen 041004, Shanxi, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Dept Math, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2019年 / 9卷 / 04期
基金
中国国家自然科学基金;
关键词
Fractional q-difference equation; q-integral condition; explicit iterative sequence; hybrid monotone method; Q-DIFFERENCE EQUATIONS; EXTREMAL SOLUTIONS; EXISTENCE;
D O I
10.11948/2156-907X.20180193
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, under certain nonlinear growth conditions, we investigate the existence and successive iterations for the unique positive solution of a nonlinear fractional q-integral boundary problem by employing hybrid monotone method, which is a novel approach to nonlinear fractional q-difference equation. This paper not only proves the existence of the unique positive solution, but also gives some computable explicit hybrid iterative sequences approximating to the unique positive solution.
引用
收藏
页码:1204 / 1215
页数:12
相关论文
共 41 条
[1]   Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function [J].
Abdeljawad, Thabet ;
Baleanu, Dumitru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) :4682-4688
[2]   CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
AGARWAL, RP .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 :365-&
[3]  
Ahmad B., 2016, INEQUALITIES
[4]   Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions [J].
Ahmad, Bashir ;
Nieto, Juan J. ;
Alsaedi, Ahmed ;
Al-Hutami, Hana .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (05) :2890-2909
[5]   Existence results for fractional q-difference equations of order α ∈]2, 3[ with three-point boundary conditions [J].
Almeida, Ricardo ;
Martins, Natalia .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (06) :1675-1685
[6]   SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES [J].
ALSALAM, WA .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 :135-&
[7]  
Anastassiou George A, 2011, Cubo, V13, P61
[8]  
[Anonymous], 2012, LECT NOTES MATH
[9]  
[Anonymous], 2016, ADV DIFFER EQU-NY
[10]   Fractional q-calculus on a time scale [J].
Atici, Ferhan M. ;
Eloe, Paul W. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (03) :333-344