Existence and uniqueness of periodic solutions for a kind of second order neutral functional differential equations

被引:11
作者
Liu, Bingwen [1 ]
Huang, Lihong
机构
[1] Hunan Univ Arts & Sci, Dept Math, Changde 415000, Hunan, Peoples R China
[2] Hunan Univ, Coll Math & Econometr, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
second order; neutral; functional differential equations; periodic solutions; coincidence degree;
D O I
10.1016/j.nonrwa.2005.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we use the coincidence degree theory to establish new results on the existence and uniqueness of T-periodic solutions for the second order neutral functional differential equation of the form (x(t) + Bx(t - delta))" + Cx'(t) + g(x(t - tau(t))) = p(t). (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:222 / 229
页数:8
相关论文
共 7 条
[1]  
Burton TA., 2005, Stability and periodic solutions of ordinary and functional differential equations
[2]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[3]  
Hardy G.H., 1964, INEQUALITIES
[4]   Periodic solutions to neutral differential equation with deviating arguments [J].
Lu, SP ;
Ge, WG ;
Zheng, ZX .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (01) :17-27
[5]   Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :501-514
[6]  
[王根强 Wang Genqiang], 2004, [数学学报, Acta Mathematica Sinica], V47, P379
[7]   A priori bounds for periodic solutions of a delay Rayleigh equation [J].
Wang, GQ ;
Cheng, SS .
APPLIED MATHEMATICS LETTERS, 1999, 12 (03) :41-44