Isotopic and kinetic assessment of the mechanism of methane reforming and decomposition reactions on supported iridium catalysts

被引:93
作者
Wei, JM [1 ]
Iglesia, E [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
关键词
D O I
10.1039/b400934g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Isotopic tracer and kinetic measurements were used to determine the identity and reversibility of elementary steps required for CH4-CO2, CH4-H2O and CH4 decomposition reactions on supported It clusters. The results led to a simple and rigorous mechanism that includes steps required for these reactions as well as water-gas shift reactions. All three CH4 reactions gave similar forward rates, rate constants, activation energies, and kinetic isotopic effects, indicating that C-H bond activation is the only kinetically relevant step on Ir surfaces. CO2 and H2O activation is quasi-equilibrated and intermediates derived from these co-reactants are not involved in kinetically-relevant steps. Isotopic cross-exchange during CH4/CD4/CO2 and CH4/CD4/H2O reactions is much slower than chemical conversion, indicating that C-H bond activation is irreversible. Identical C-13 contents in CO and CO2 formed from (CH4)-C-12/(CO2)-C-12/(CO)-C-13 reactions showed that CO2 activation is reversible and quasi-equilibrated. Binomial isotopomer distributions in water and dihydrogen formed from CH4/CO2/D-2 and CD4/H2O mixtures are consistent with quasi-equilibrated hydrogen and water activation and recombinative desorption during CH4 reforming on It surfaces. Taken together with the quasi-equilibrated nature Of CO2 activation steps, these data require that water-gas shift reactions must also be at equilibrium, as confirmed by analysis of the products formed in CH4 reforming reactions.
引用
收藏
页码:3754 / 3759
页数:6
相关论文
共 20 条
[1]   Partially decarbonylated tetrairidium clusters on MgO: structural characterization and catalysis of toluene hydrogenation [J].
Alexeev, OS ;
Kim, DW ;
Gates, BC .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2000, 162 (1-2) :67-82
[2]   PARTIAL OXIDATION OF METHANE TO SYNTHESIS GAS-USING CARBON-DIOXIDE [J].
ASHCROFT, AT ;
CHEETHAM, AK ;
GREEN, MLH ;
VERNON, PDF .
NATURE, 1991, 352 (6332) :225-226
[3]   Bond dissociation energies of organic molecules [J].
Blanksby, SJ ;
Ellison, GB .
ACCOUNTS OF CHEMICAL RESEARCH, 2003, 36 (04) :255-263
[4]  
Boudart M., 2014, KINETICS HETEROGENEO
[5]   The role of metal-support interactions in CO2 reforming of CH4 [J].
Bradford, MCJ ;
Vannice, MA .
CATALYSIS TODAY, 1999, 50 (01) :87-96
[6]   METHANE ACTIVATION AND DEHYDROGENATION ON NICKEL AND COBALT - A COMPUTATIONAL STUDY [J].
BURGHGRAEF, H ;
JANSEN, APJ ;
VANSANTEN, RA .
SURFACE SCIENCE, 1995, 324 (2-3) :345-356
[7]   Theoretical calculations of dissociative adsorption of CH4 on an Ir(111) surface [J].
Henkelman, G ;
Jónsson, H .
PHYSICAL REVIEW LETTERS, 2001, 86 (04) :664-667
[8]   CO2-reforming of methane on supported Rh and Ir catalysts [J].
Mark, MF ;
Maier, WF .
JOURNAL OF CATALYSIS, 1996, 164 (01) :122-130
[9]   STUDY OF MIXED STEAM AND CO2 REFORMING OF CH4 TO SYNGAS ON MGO-SUPPORTED METALS [J].
QIN, D ;
LAPSZEWICZ, J .
CATALYSIS TODAY, 1994, 21 (2-3) :551-560
[10]   CO2-REFORMING OF METHANE OVER TRANSITION-METALS [J].
ROSTRUPNIELSEN, JR ;
HANSEN, JHB .
JOURNAL OF CATALYSIS, 1993, 144 (01) :38-49