On some Sobolev spaces with matrix weights and classical type Sobolev orthogonal polynomials

被引:2
作者
Zagorodnyuk, S. M. [1 ]
机构
[1] Kharkov Natl Univ, Sch Math & Comp Sci, 4 Svobody Sq, Kharkiv, Ukraine
关键词
Sobolev orthogonal polynomials; generating function; integral representation; recurrence relation; differential equation; asymptotics;
D O I
10.1080/10236198.2021.1887160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For every system {p(n)(z)}(n=0)(infinity) of OPRL or OPUC, we construct Sobolev orthogonal polynomials y(n)(z), with explicit integral representations involving p(n). Two concrete families of Sobolev orthogonal polynomials (depending on an arbitrary number of complex parameters) which are generalized eigenvalues of a difference operator (in n) and generalized eigenvalues of a differential operator (in z) are given. We define suitable Sobolev spaces with matrix weights and consider measurable factorizations of weights. Applications of a general connection between Sobolev orthogonal polynomials and orthogonal systems of functions in the direct sum of scalar L-mu(2) spaces are discussed.
引用
收藏
页码:261 / 283
页数:23
相关论文
共 29 条
[1]   Polynomial solutions of differential equations [J].
Azad, H. ;
Laradji, A. ;
Mustafa, M. T. .
ADVANCES IN DIFFERENCE EQUATIONS, 2011,
[2]   DIFFERENTIAL-EQUATIONS IN THE SPECTRAL PARAMETER [J].
DUISTERMAAT, JJ ;
GRUNBAUM, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (02) :177-240
[3]   A GENERALIZATION OF FAVARD THEOREM FOR POLYNOMIALS SATISFYING A RECURRENCE RELATION [J].
DURAN, AJ .
JOURNAL OF APPROXIMATION THEORY, 1993, 74 (01) :83-109
[4]   Differential equations for discrete Jacobi-Sobolev orthogonal polynomials [J].
Duran, Antonio J. ;
de la Iglesia, Manuel D. .
JOURNAL OF SPECTRAL THEORY, 2018, 8 (01) :191-234
[5]  
Erdelyi Arthur, 1955, Higher Transcendental Functions, VIII
[6]   Orthogonal polynomial solutions of linear ordinary differential equations [J].
Everitt, WN ;
Kwon, KH ;
Littlejohn, LL ;
Wellman, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :85-109
[7]   Vector Orthogonal Polynomials with Bochner's Property [J].
Horozov, Emil .
CONSTRUCTIVE APPROXIMATION, 2018, 48 (02) :201-234
[8]   d-Orthogonal Analogs of Classical Orthogonal Polynomials [J].
Horozov, Emil .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
[9]   Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials [J].
Horozov, Emil .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
[10]   Diagonalizability and symmetrizability of Sobolev-type bilinear forms: A combinatorial approach [J].
Kim, H. K. ;
Kwon, K. H. ;
Littlejohn, L. L. ;
Yoon, G. J. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 460 :111-124