Numerical Simulation of Jumping Droplet Condensation

被引:37
作者
Birbarah, Patrick [1 ]
Chavan, Shreyas [1 ]
Miljkovic, Nenad [1 ,2 ,3 ,4 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, 1406 W Green St, Urbana, IL 61801 USA
[3] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[4] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Nishi Ku, 744 Moto Oka, Fukuoka, Fukuoka 8190395, Japan
基金
美国国家科学基金会;
关键词
SUPERHYDROPHOBIC NANOSTRUCTURE SURFACE; DROPWISE CONDENSATION; HEAT-TRANSFER; COALESCENCE; ABSENCE; MODEL;
D O I
10.1021/acs.langmuir.9b01253
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Jumping droplet condensation has been shown to enhance heat transfer performance (approximate to 100%) when compared to dropwise condensation by reducing the time-averaged droplet size (approximate to 10 mu m) on the condensing surface. Here, we develop a rigorous, three-dimensional numerical simulation of jumping droplet condensation to compute the steady-state time-averaged droplet size distribution. To characterize the criteria for achieving steady state, we use maximum radii (R-max) tracking on the surface, showing that R-max settles to an average in time once steady state is reached. The effects of the minimum jumping radius (0.1-10 mu m), maximum jumping radius, apparent advancing contact angle (150-175 degrees), and droplet growth rate were investigated. We provide a numerical fit for the droplet size distribution with an overall correlation coefficient greater than 0.995. The heat transfer performance was evaluated as a function of apparent contact angle and hydrophobic coating thickness, showing excellent agreement with prior experimentally measured values. Our simulations uncovered that droplet size mismatch during coalescence has the potential to impede the achievement of steady state and describe a new flooding mechanism for jumping droplet condensation. Our work not only develops a unified numerical model for jumping droplet condensation that is extendable to a plethora of other conditions but also demonstrates design criteria for nonwetting surface manufacture for enhanced jumping droplet condensation heat transfer.
引用
收藏
页码:10309 / 10321
页数:13
相关论文
共 62 条
[1]   Modeling of heat transfer in dropwise condensation [J].
AbuOrabi, M .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1998, 41 (01) :81-87
[2]   Internal convective jumping-droplet condensation in tubes [J].
Birbarah, Patrick ;
Miljkovic, Nenad .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 114 :1025-1036
[3]   External convective jumping-droplet condensation on a flat plate [J].
Birbarah, Patrick ;
Miljkovic, Nenad .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 107 :74-88
[4]   A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces [J].
Birbarah, Patrick ;
Li, Zhaoer ;
Pauls, Alexander ;
Miljkovic, Nenad .
LANGMUIR, 2015, 31 (28) :7885-7896
[5]   Coalescence-induced nanodroplet jumping [J].
Cha, Hyeongyun ;
Xu, Chenyu ;
Sotelo, Jesus ;
Chun, Jae Min ;
Yokoyama, Yukihiro ;
Enright, Ryan ;
Miljkovic, Nenad .
PHYSICAL REVIEW FLUIDS, 2016, 1 (06)
[6]   Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes [J].
Cha, Hyeongyun ;
Chun, Jae Min ;
Sotelo, Jesus ;
Miljkovic, Nenad .
ACS NANO, 2016, 10 (09) :8223-8232
[7]   Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces [J].
Chavan, Shreyas ;
Cha, Hyeongyun ;
Orejon, Daniel ;
Nawaz, Kashif ;
Singla, Nitish ;
Yeung, Yip Fun ;
Park, Deokgeun ;
Kang, Dong Hoon ;
Chang, Yujin ;
Takata, Yasuyuki ;
Miljkovic, Nenad .
LANGMUIR, 2016, 32 (31) :7774-7787
[8]  
Chen XM, 2016, SCI REP-UK, V6, DOI [10.1038/srep25114, 10.1038/srep18649]
[9]   Nanograssed Micropyramidal Architectures for Continuous Dropwise Condensation [J].
Chen, Xuemei ;
Wu, Jun ;
Ma, Ruiyuan ;
Hua, Meng ;
Koratkar, Nikhil ;
Yao, Shuhuai ;
Wang, Zuankai .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (24) :4617-4623
[10]   Nanoengineered materials for liquid-vapour phase-change heat transfer [J].
Cho, H. Jeremy ;
Preston, Daniel J. ;
Zhu, Yangying ;
Wang, Evelyn N. .
NATURE REVIEWS MATERIALS, 2017, 2 (02)