Asymptotic analysis and scaling of friction parameters

被引:33
作者
Bucur, Dorin
Ionescu, Ioan R.
机构
[1] Univ Savoie, Math Lab, F-73376 Le Bourget Du Lac, France
[2] Univ Metz, Math Lab, F-57045 Metz, France
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2006年 / 57卷 / 06期
关键词
asymptotic analysis; spectral analysis; slip-dependent friction; wave equation; earthquake initiation;
D O I
10.1007/s00033-006-0070-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an eigenvalue problem associated to the antiplane shearing on a system of collinear faults under a slip-dependent friction law. Firstly we consider a periodic system of faults in the whole plane. We prove that the first eigenvalues/eigenfunctions of different physical periodicity are all equal and that the other eigenvalues converge to this first common eigenvalue as their physical period becomes indefinitely large. Secondly we consider a large scale fault system composed on a small scale collinear faults periodically disposed. If beta(0)* is the first eigenvalue of the periodic problem in the whole plane, we prove that the first eigenvalue of the microscopic problem behaves as beta(*)(0)/epsilon when epsilon -> 0 regardless the geometry of the domain (here epsilon is the scale quotient). The geophysical implications of this result is that the macroscopic critical slip D-c scales with D-c(epsilon)/epsilon (here D-c(epsilon) is the small scale critical slip).
引用
收藏
页码:1042 / 1056
页数:15
相关论文
共 15 条