A Unified Convergence Analysis of Stochastic Bregman Proximal Gradient and Extragradient Methods

被引:10
作者
Xiao, Xiantao [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Stochastic approximation; Extragradient; Convergence analysis; 1ST-ORDER METHODS; VARIANCE REDUCTION; OPTIMIZATION; DESCENT; CONTINUITY; CONVEX;
D O I
10.1007/s10957-020-01799-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a mini-batch stochastic Bregman proximal gradient method and a mini-batch stochastic Bregman proximal extragradient method for stochastic convex composite optimization problems. A simplified and unified convergence analysis framework is proposed to obtain almost sure convergence properties and expected convergence rates of the mini-batch stochastic Bregman proximal gradient method and its variants. This framework can also be used to analyze the convergence of the mini-batch stochastic Bregman proximal extragradient method, which has seldom been discussed in the literature. We point out that the standard uniformly bounded variance assumption and the usual Lipschitz gradient continuity assumption are not required in the analysis.
引用
收藏
页码:605 / 627
页数:23
相关论文
共 43 条
[1]  
Atchadé YF, 2017, J MACH LEARN RES, V18, P1
[2]   A Descent Lemma Beyond Lipschitz Gradient Continuity: First-Order Methods Revisited and Applications [J].
Bauschke, Heinz H. ;
Bolte, Jerome ;
Teboulle, Marc .
MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (02) :330-348
[3]  
Birge JR, 2011, SPRINGER SER OPER RE, P3, DOI 10.1007/978-1-4614-0237-4
[4]   FIRST ORDER METHODS BEYOND CONVEXITY AND LIPSCHITZ GRADIENT CONTINUITY WITH APPLICATIONS TO QUADRATIC INVERSE PROBLEMS [J].
Bolte, Jerome ;
Sabach, Shoham ;
Teboulle, Marc ;
Vaisbourd, Yakov .
SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (03) :2131-2151
[5]   Optimization Methods for Large-Scale Machine Learning [J].
Bottou, Leon ;
Curtis, Frank E. ;
Nocedal, Jorge .
SIAM REVIEW, 2018, 60 (02) :223-311
[6]  
Chavdarova T., 2019, ARXIV190408598
[7]  
Cui S., 2019, ANAL VARIANCE REDUCE
[8]   STOCHASTIC BLOCK MIRROR DESCENT METHODS FOR NONSMOOTH AND STOCHASTIC OPTIMIZATION [J].
Dang, Cong D. ;
Lan, Guanghui .
SIAM JOURNAL ON OPTIMIZATION, 2015, 25 (02) :856-881
[9]  
Defazio A, 2014, ADV NEUR IN, V27
[10]  
Facchinei F., 2003, Finite-Dimensional Variational Inequalities and Complementarity Problems