Linear Continuum Mechanics for Quantum Many-Body Systems

被引:22
作者
Tao, Jianmin [1 ,2 ]
Gao, Xianlong [3 ,6 ]
Vignale, G. [3 ]
Tokatly, I. V. [4 ,5 ]
机构
[1] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, CNLS, Los Alamos, NM 87545 USA
[3] Univ Missouri, Dept Phys, Columbia, MO 65211 USA
[4] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[5] Univ Basque Country, EHU, Dept Fis Mat, CSIC,ETSF Sci Dev Ctr,Ctr Fis Mat, San Sebastian 20018, Spain
[6] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
关键词
DENSITY-FUNCTIONAL THEORY; HYDRODYNAMICS; EXPLOSION;
D O I
10.1103/PhysRevLett.103.086401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop the continuum mechanics of quantum many-body systems in the linear response regime. The basic variable of the theory is the displacement field, for which we derive a closed equation of motion under the assumption that the time-dependent wave function in a locally comoving reference frame can be described as a geometric deformation of the ground-state wave function. We show that this equation of motion is exact for systems consisting of a single particle, and for all systems at sufficiently high frequency, and that it leads to an excitation spectrum that has the correct integrated strength. The theory is illustrated by simple model applications to one- and two-electron systems.
引用
收藏
页数:4
相关论文
共 27 条
[1]   Stopping power of atoms with several electrons [J].
Bloch, F. .
ZEITSCHRIFT FUR PHYSIK, 1933, 81 (5-6) :363-376
[2]   Stepwise explosion of atomic clusters induced by a strong laser field [J].
Brewczyk, M ;
Clark, CW ;
Lewenstein, M ;
Rzazewski, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1857-1860
[3]  
Casida M. E., 1995, Recent Advances in Density Functional Methods, Part I, P155, DOI DOI 10.1142/9789812830586
[4]   Elasticity of an electron liquid [J].
Conti, S ;
Vignale, G .
PHYSICAL REVIEW B, 1999, 60 (11) :7966-7980
[5]   Van der Waals density functional for general geometries -: art. no. 246401 [J].
Dion, M ;
Rydberg, H ;
Schröder, E ;
Langreth, DC ;
Lundqvist, BI .
PHYSICAL REVIEW LETTERS, 2004, 92 (24) :246401-1
[6]  
Dobson J.F., 1998, DENSITY FUNCTIONAL T
[7]   Soft cohesive forces [J].
Dobson, JF ;
Wang, J ;
Dinte, BP ;
McLennan, K ;
Le, HM .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2005, 101 (05) :579-598
[8]  
Dobson JF, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.075301
[9]   High-frequency hydrodynamics and Thomas-Fermi theory [J].
Dobson, JF ;
Le, HM .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 501 :327-338
[10]   Quantum Monte Carlo simulations of solids [J].
Foulkes, WMC ;
Mitas, L ;
Needs, RJ ;
Rajagopal, G .
REVIEWS OF MODERN PHYSICS, 2001, 73 (01) :33-83