On a class of Hermite interpolation problems

被引:8
|
作者
Hakopian, HA
机构
[1] Yerevan State Univ, Dept Math, Yerevan 375049, Armenia
[2] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
关键词
Linear Subspace; Interpolation Problem; Lagrange Interpolation; Simple Point; Hermite Interpolation;
D O I
10.1023/A:1018933622590
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we characterize sets of solvability of Hermite multivariate interpolation problems with the sum of multiplicities less than or equal to 2n+1, where n is the degree of the polynomial space. This can be viewed as a natural generalization of a well-known result of Severi (1921).
引用
收藏
页码:303 / 309
页数:7
相关论文
共 50 条
  • [1] On a class of Hermite interpolation problems
    Hakop A. Hakopian
    Advances in Computational Mathematics, 2000, 12 : 303 - 309
  • [2] On Hermite interpolation in Rd
    Shekhtman, B
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2004, 18 : 65 - 72
  • [3] On the Hermite interpolation
    Xing-hua WANG Department of Mathematics
    Science in China(Series A:Mathematics), 2007, (11) : 1651 - 1660
  • [4] On the Hermite interpolation
    Wang, Xing-hua
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (11): : 1651 - 1660
  • [5] On the Hermite interpolation
    Xing-hua Wang
    Science in China Series A: Mathematics, 2007, 50 : 1651 - 1660
  • [6] Hermite and Hermite-Fejér interpolation at Pollaczek zeros
    Mastroianni, Giuseppe
    Notarangelo, Incoronata
    CALCOLO, 2025, 62 (01)
  • [7] CONVERGENCE OF LAGRANGE-HERMITE INTERPOLATION
    Bahadur, Swarnima
    Shukla, Manisha
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 255 - 262
  • [8] Bivariate Hermite interpolation on the exponential curve
    Van Manh Phung
    Van Long Tang
    PERIODICA MATHEMATICA HUNGARICA, 2019, 78 (02) : 166 - 177
  • [9] Algorithms for solving Hermite interpolation problems using the Fast Fourier Transform
    Berriochoa, Elias
    Cachafeiro, Alicia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) : 882 - 894
  • [10] A RATIONAL KRYLOV METHOD BASED ON HERMITE INTERPOLATION FOR NONLINEAR EIGENVALUE PROBLEMS
    Van Beeumen, Roel
    Meerbergen, Karl
    Michiels, Wim
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01) : A327 - A350