RECOVERY-BASED ERROR ESTIMATOR FOR INTERFACE PROBLEMS: CONFORMING LINEAR ELEMENTS

被引:68
作者
Cai, Zhiqiang [1 ]
Zhang, Shun [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
a posteriori error estimator; adaptive method; interface problems; finite element; SUPERCONVERGENT PATCH RECOVERY; POINTWISE GRADIENT ERROR; A-POSTERIORI ESTIMATORS; ELLIPTIC-EQUATIONS; IRREGULAR MESHES; PART II; GRIDS;
D O I
10.1137/080717407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a new recovery-based a posteriori error estimator for the conforming linear finite element approximation to elliptic interface problems. Instead of recovering the gradient in the continuous finite element space, the flux is recovered through a weighted L-2 projection onto H(div) conforming finite element spaces. The resulting error estimator is analyzed by establishing the reliability and efficiency bounds and is supported by numerical results. This paper also proposes an adaptive finite element method based on either the recovery-based estimators or the edge estimator through local mesh refinement and establishes its convergence. In particular, it is shown that the reliability and efficiency constants as well as the convergence rate of the adaptive method are independent of the size of jumps.
引用
收藏
页码:2132 / 2156
页数:25
相关论文
共 36 条
[1]  
AINSWORTH M, 1992, NUMER MATH, V60, P429
[2]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[3]  
Babuska I., 2001, NUMER MATH SCI COMPU
[4]   Superconvergent derivative recovery for Lagrange triangular elements of degree p on unstructured grids [J].
Bank, Randolph E. ;
Xu, Jinchao ;
Zheng, Bin .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (05) :2032-2046
[5]   Asymptotically exact a posteriori error estimators, part I: Grids with superconvergence [J].
Bank, RE ;
Xu, JC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (06) :2294-2312
[6]  
Bernardi C, 2000, NUMER MATH, V85, P579, DOI 10.1007/s002110000135
[7]  
Brenner SC., 2004, ENCY COMPUTATIONAL M, V1, P73
[8]   Edge residuals dominate A posteriori error estimates for low order finite element methods [J].
Carsten, C ;
Verfürth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (05) :1571-1587
[9]  
Carstensen C, 2004, MATH COMPUT, V73, P1153
[10]   An experimental survey of a posteriori Courant finite element error control for the Poisson equation [J].
Carstensen, C ;
Bartels, S ;
Klose, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) :79-106