On generalized synchronization of spatial chaos

被引:42
作者
Chen, GR
Liu, ST
机构
[1] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[2] S China Univ Technol, Dept Automat Control Engn, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0960-0779(02)00101-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the following two spatially generalized Logistic systems with two different real parameters: x(m+1,n) + omegax(m,n+1) = 1 - u(1)[(1 + omega)x(mn)](2) and y(m+1,n) + omegay(m,n+1) = 1 - u(2)[(1 + omega)y(mn)](2), where omega is a constant. We introduce an analytical method for generalized synchronization of these two spatially chaotic systems. We specify a range of the coupling constant in the generalized synchronization, and characterize a nonlinear function for synchronization stability. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:311 / 318
页数:8
相关论文
共 13 条
[1]   SYNCHRONIZATION OF CHAOTIC ORBITS - THE EFFECT OF A FINITE-TIME STEP [J].
AMRITKAR, RE ;
GUPTE, N .
PHYSICAL REVIEW E, 1993, 47 (06) :3889-3895
[2]   A unifying definition of synchronization for dynamical systems [J].
Brown, R ;
Kocarev, L .
CHAOS, 2000, 10 (02) :344-349
[3]  
CHEN G, IN PRESS INT J BIFUR
[4]  
Chen G., 1998, CHAOS ORDER METHODOL
[5]   ANALYSIS AND SYNTHESIS OF SYNCHRONOUS PERIODIC AND CHAOTIC SYSTEMS [J].
HE, R ;
VAIDYA, PG .
PHYSICAL REVIEW A, 1992, 46 (12) :7387-7392
[6]   Synchronization of spatiotemporal chaos and its applications [J].
Hu, G ;
Xiao, JH ;
Yang, JZ ;
Xie, FG ;
Qu, ZL .
PHYSICAL REVIEW E, 1997, 56 (03) :2738-2746
[7]  
HU G, 1994, PHYS REV LETT, V72, P68, DOI 10.1103/PhysRevLett.72.68
[8]   Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems [J].
Kocarev, L ;
Parlitz, U .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1816-1819
[9]  
LIU ST, IN PRESS INT J BIFUR
[10]  
NIKOLAI FR, 1995, PHYS REV E, V51, P1980