A multiplicative weighted L2-norm total variation regularization for deblurring algorithms

被引:0
|
作者
Abubakar, A [1 ]
van den Berg, PM [1 ]
机构
[1] Delft Univ Technol, Ctr Tech Geosci, NL-2628 CD Delft, Netherlands
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper a new deblurring algorithms for a special deconvolution problem, where a parameter describes the degree of blurring, is considered. The algorithm is based on a Conjugate Gradient technique and used the recently developed weighted l(2)(Omega)-norm Total Variation regularizer to obtain a reasonable solution. In order to avoid the necessity of determining the appropriate regularization parameter for this TV regularizer, this TV regularizer is included as a multiplicative constraint. In this way the appropriate regularization parameter is determined by the deblurring process itself. Numerical test shows that the proposed algorithm works very effective.
引用
收藏
页码:3545 / 3548
页数:4
相关论文
共 50 条
  • [31] Exact L2-norm plane separation
    Charles Audet
    Pierre Hansen
    Alejandro Karam
    Chi To Ng
    Sylvain Perron
    Optimization Letters, 2008, 2 : 483 - 495
  • [32] Exact L2-norm plane separation
    Audet, Charles
    Hansen, Pierre
    Karam, Alejandro
    Ng, Chi To
    Perron, Sylvain
    OPTIMIZATION LETTERS, 2008, 2 (04) : 483 - 495
  • [33] Sparseness via L2-norm minimization?
    Marti-Lopez, F.
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 687 - 691
  • [34] An iteratively reweighted norm algorithm for Total Variation regularization
    Rodriguez, Paul
    Wohlberg, Brendt
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 892 - +
  • [35] Inversion of Magnetic Data Based on L1 Norm and Total Variation Regularization
    Peng, Jiaxiang
    Chen, Bo
    Sun, Shida
    Du, Jinsong
    Li, Siyang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [36] Weighted-l1-method-noise regularization for image deblurring
    Yang, Chunyu
    Wang, Weiwei
    Feng, Xiangchu
    Liu, Xin
    SIGNAL PROCESSING, 2019, 157 : 14 - 24
  • [37] Image Deblurring by Generalized Total Variation Regularization and Least Squares Fidelity
    Liu, Haiying
    Gu, Jason
    Huang, Chaojiong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1945 - 1949
  • [38] ON THE UNIQUENESS OF MONOSPLINES AND PERFECT SPLINES OF LEAST L-NORM AND L2-NORM
    BRAESS, D
    DYN, N
    JOURNAL D ANALYSE MATHEMATIQUE, 1982, 41 : 217 - 233
  • [39] Residual analysis for unidimensional scaling in the L2-norm
    Brusco, Michael J.
    Steinley, Douglas
    Kohn, Hans-Friedrich
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2019, 48 (07) : 2210 - 2221
  • [40] CONVERGENCE IN L2-NORM OF PROBABILITY DENSITY ESTIMATES
    NADARAYA, EA
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1973, 18 (04): : 853 - 855