Comparative molecular dynamics study of the receptor-binding domains in SARS-CoV-2 and SARS-CoV and the effects of mutations on the binding affinity

被引:22
作者
Rezaei, Shokouh [1 ]
Sefidbakht, Yahya [1 ]
Uskokovic, Vuk [2 ]
机构
[1] Shahid Behesti Univ, Prot Res Ctr, Tehran, Iran
[2] Adv Mat & Nanobiotechnol Lab, TardigradeNano, Irvine, CA USA
关键词
Receptor-binding domain; MD simulation; SARS-CoV-2; SARS-CoV; mutations; residue interactions network; binding free energy; PROTEIN-STRUCTURE; SOLVATION; QUALITY; SERVER; SPIKE; ELECTROSTATICS; AGGREGATION; PREDICTION; WEB;
D O I
10.1080/07391102.2020.1860829
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here, we report on a computational comparison of the receptor-binding domains (RBDs) on the spike proteins of severe respiratory syndrome coronavirus-2 (SARS-CoV-2) and SARS-CoV in free forms and as complexes with angiotensin-converting enzyme 2 (ACE2) as their receptor in humans. The impact of 42 mutations discovered so far on the structure and thermodynamics of SARS-CoV-2 RBD was also assessed. The binding affinity of SARS-CoV-2 RBD for ACE2 is higher than that of SARS-CoV RBD. The binding of COVA2-04 antibody to SARS-CoV-2 RBD is more energetically favorable than the binding of COVA2-39, but also less favorable than the formation of SARS-CoV-2 RBD-ACE2 complex. The net charge, the dipole moment and hydrophilicity of SARS-CoV-2 RBD are higher than those of SARS-CoV RBD, producing lower solvation and surface free energies and thus lower stability. The structure of SARS-CoV-2 RBD is also more flexible and more open, with a larger solvent-accessible surface area than that of SARS-CoV RBD. Single-point mutations have a dramatic effect on distribution of charges, most prominently at the site of substitution and its immediate vicinity. These charge alterations alter the free energy landscape, while X -> F mutations exhibit a stabilizing effect on the RBD structure through pi stacking. F456 and W436 emerge as two key residues governing the stability and affinity of the spike protein for its ACE2 receptor. These analyses of the structural differences and the impact of mutations on different viral strains and members of the coronavirus genera are an essential aid in the development of effective therapeutic strategies. Communicated by Ramaswamy H. Sarma
引用
收藏
页码:4662 / 4681
页数:20
相关论文
共 50 条
[11]   The pH Effects on SARS-CoV and SARS-CoV-2 Spike Proteins in the Process of Binding to hACE2 [J].
Xie, Yixin ;
Guo, Wenhan ;
Lopez-Hernadez, Alan ;
Teng, Shaolei ;
Li, Lin .
PATHOGENS, 2022, 11 (02)
[12]   Binding of synthetic nanobodies to the SARS-CoV-2 receptor-binding domain: the importance of salt bridges [J].
Shen, Hujun ;
Yang, Hengxiu .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (35) :24129-24142
[13]   Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases [J].
Giovanni A. Rossi ;
Oliviero Sacco ;
Enrica Mancino ;
Luca Cristiani ;
Fabio Midulla .
Infection, 2020, 48 :665-669
[14]   Differences and similarities between SARS-CoV and SARS-CoV-2: spike receptor-binding domain recognition and host cell infection with support of cellular serine proteases [J].
Rossi, Giovanni A. ;
Sacco, Oliviero ;
Mancino, Enrica ;
Cristiani, Luca ;
Midulla, Fabio .
INFECTION, 2020, 48 (05) :665-669
[15]   Peptide Binder with High-Affinity for the SARS-CoV-2 Spike Receptor-Binding Domain [J].
Yu, Lanlan ;
Wang, Ruonan ;
Wen, Tao ;
Liu, Lei ;
Wang, Tao ;
Liu, Shuli ;
Xu, Haiyan ;
Wang, Chenxuan .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (25) :28527-28536
[16]   Receptor-binding domain-associated serotypes of SARS-CoV-2 [J].
Liu, Zezhong ;
Lu, Lu ;
Jiang, Shibo .
EMERGING MICROBES & INFECTIONS, 2024, 13 (01)
[17]   The Pathogenicity of MERS-CoV, SARS-CoV and SARS-CoV-2: A Comparative Overview [J].
Shashank, Patil M. ;
Prithvi, Shirahatti S. ;
Ramith, Ramu .
RESEARCH JOURNAL OF BIOTECHNOLOGY, 2021, 16 (01) :182-192
[18]   Amyloidogenic proteins in the SARS-CoV and SARS-CoV-2 proteomes [J].
Bhardwaj, Taniya ;
Gadhave, Kundlik ;
Kapuganti, Shivani K. ;
Kumar, Prateek ;
Brotzakis, Zacharias Faidon ;
Saumya, Kumar Udit ;
Nayak, Namyashree ;
Kumar, Ankur ;
Joshi, Richa ;
Mukherjee, Bodhidipra ;
Bhardwaj, Aparna ;
Thakur, Krishan Gopal ;
Garg, Neha ;
Vendruscolo, Michele ;
Giri, Rajanish .
NATURE COMMUNICATIONS, 2023, 14 (01)
[19]   Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine [J].
Deliyannis, Georgia ;
Gherardin, Nicholas A. ;
Wong, Chinn Yi ;
Grimley, Samantha L. ;
Cooney, James P. ;
Redmond, Samuel J. ;
Ellenberg, Paula ;
Davidson, Kathryn C. ;
Mordant, Francesca L. ;
Smith, Tim ;
Gillard, Marianne ;
Lopez, Ester ;
McAuley, Julie ;
Tan, Chee Wah ;
Wang, Jing J. ;
Zeng, Weiguang ;
Littlejohn, Mason ;
Zhou, Runhong ;
Chan, Jasper Fuk-Woo ;
Chen, Zhi-wei ;
Hartwig, Airn E. ;
Bowen, Richard ;
Mackenzie, Jason M. ;
Vincan, Elizabeth ;
Torresi, Joseph ;
Kedzierska, Katherine ;
Pouton, Colin W. ;
Gordon, Tom P. ;
Wang, Lin-fa ;
Kent, Stephen J. ;
Wheatley, Adam K. ;
Lewin, Sharon R. ;
Subbarao, Kanta ;
Chung, Amy W. ;
Pellegrini, Marc ;
Munro, Trent ;
Nolan, Terry ;
Rockman, Steven ;
Jackson, David C. ;
Purcell, Damian F. J. ;
Godfrey, Dale I. .
EBIOMEDICINE, 2023, 92
[20]   An Engineered Receptor-Binding Domain Improves the Immunogenicity of Multivalent SARS-CoV-2 Vaccines [J].
Guo, Yan ;
He, Wenhui ;
Mou, Huihui ;
Zhang, Lizhou ;
Chang, Jing ;
Peng, Shoujiao ;
Ojha, Amrita ;
Tavora, Rubens ;
Parcells, Mark S. ;
Luo, Guangxiang ;
Li, Wenhui ;
Zhong, Guocai ;
Choe, Hyeryun ;
Farzan, Michael ;
Quinlan, Brian D. .
MBIO, 2021, 12 (03)