Multi-View Guided Multi-View Stereo

被引:3
|
作者
Poggi, Matteo [1 ]
Conti, Andrea [1 ]
Mattoccia, Stefano [1 ]
机构
[1] Univ Bologna, Bologna, Italy
关键词
DEPTH; RECONSTRUCTION; LIDAR;
D O I
10.1109/IROS47612.2022.9982010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel deep framework for dense 3D reconstruction from multiple image frames, leveraging a sparse set of depth measurements gathered jointly with image acquisition. Given a deep multi-view stereo network, our framework uses sparse depth hints to guide the neural network by modulating the plane-sweep cost volume built during the forward step, enabling us to infer constantly much more accurate depth maps. Moreover, since multiple viewpoints can provide additional depth measurements, we propose a multi-view guidance strategy that increases the density of the sparse points used to guide the network, thus leading to even more accurate results. We evaluate our Multi-View Guided framework within a variety of state-of-the-art deep multi-view stereo networks, demonstrating its effectiveness at improving the results achieved by each of them on BlendedMVG and DTU datasets.
引用
收藏
页码:8391 / 8398
页数:8
相关论文
共 50 条
  • [41] PatchmatchNet: Learned Multi-View Patchmatch Stereo
    Wang, Fangjinhua
    Galliani, Silvano
    Vogel, Christoph
    Speciale, Pablo
    Pollefeys, Marc
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14189 - 14198
  • [42] Shading-Aware Multi-view Stereo
    Langguth, Fabian
    Sunkavalli, Kalyan
    Hadap, Sunil
    Goesele, Michael
    COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 : 469 - 485
  • [43] Multi-View Stereo on Consistent Face Topology
    Fyffe, G.
    Nagano, K.
    Huynh, L.
    Saito, S.
    Busch, J.
    Jones, A.
    Li, H.
    Debevec, P.
    COMPUTER GRAPHICS FORUM, 2017, 36 (02) : 295 - 309
  • [44] Facetwise Mesh Refinement for Multi-View Stereo
    Romanoni, Andrea
    Matteucci, Matteo
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 6794 - 6801
  • [45] Attention-Aware Multi-View Stereo
    Luo, Keyang
    Guan, Tao
    Ju, Lili
    Wang, Yuesong
    Chen, Zhuo
    Luo, Yawei
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 1587 - 1596
  • [46] Deep Multi-View Stereo Gone Wild
    Darmon, Francois
    Bascle, Benedicte
    Devaux, Jean-Clement
    Monasse, Pascal
    Aubry, Mathieu
    2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 484 - 493
  • [47] Multi-view stereo for community photo collections
    Goesele, Michael
    Snavely, Noah
    Curless, Brian
    Hoppe, Hugues
    Seitz, Steven M.
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 825 - +
  • [48] Continuous Depth Estimation for Multi-view Stereo
    Liu, Yebin
    Cao, Xun
    Dai, Qionghai
    Xu, Wenli
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 2121 - 2128
  • [49] Multi-view representation learning for multi-view action recognition
    Hao, Tong
    Wu, Dan
    Wang, Qian
    Sun, Jin-Sheng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 48 : 453 - 460
  • [50] Multi-view Superpixel Stereo in Urban Environments
    Branislav Mičušík
    Jana Košecká
    International Journal of Computer Vision, 2010, 89 : 106 - 119