A Data-Driven Dynamic Obstacle Avoidance Method for Liquid-Carrying Plant Protection UAVs

被引:19
作者
Ahmed, Shibbir [1 ,2 ]
Qiu, Baijing [1 ,2 ]
Kong, Chun-Wei [3 ]
Xin, Huang [1 ,2 ]
Ahmad, Fiaz [1 ,2 ,4 ]
Lin, Jinlong [1 ,2 ]
机构
[1] Jiangsu Univ, Sch Agr Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Key Lab Modern Agr Equipment & Technol, Minist Educ, Zhenjiang 212013, Jiangsu, Peoples R China
[3] Univ Michigan, Sch Aerosp Engn, Ann Arbor, MI USA
[4] Bahauddin Zakariya Univ, Dept Agr Engn, Multan 60800, Pakistan
来源
AGRONOMY-BASEL | 2022年 / 12卷 / 04期
关键词
obstacle avoidance; plant protection UAV; precision agriculture; data-driven dynamic avoidance approach; spray coverage; UNMANNED AERIAL VEHICLE; COLLISION-AVOIDANCE; SYSTEMS; IMAGERY;
D O I
10.3390/agronomy12040873
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Autonomous sprayer UAVs are one of the most used aerial machines in modern agriculture. During flight missions, some common narrow obstacles appear in the flying zone. These are non-detectable from satellite images and one of the biggest challenges for autonomous sprayer UAVs in farmland. This work introduces an obstacle avoidance architecture specifically for sprayer UAVs. This architecture has generality in the spraying UAV problem, and it reduces the reliance on the global mapping of farmland. This approach computes the avoiding path based on the onboard sensor fusion system in real-time. Moreover, it autonomously determines the transition of several maneuver states using the current spraying liquid data and the UAV dynamics data obtained by offline system identification. This approach accurately tracks the avoidance path for the nonlinear time-variant spraying UAV systems. To verify the performance of the approach, we performed multiple simulations with different spraying missions, and the method demonstrated a high spraying coverage of more than 98% while successfully avoiding all vertical obstacles. We also demonstrated the adaptability of our control architecture; the safe distance between the UAV and obstacles can be changed by specifying the value of a high-level parameter on the controller. The proposed method adds value to precision agriculture, reduces mission time, and maximizes the spraying area coverage.
引用
收藏
页数:25
相关论文
共 54 条
[1]   Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application [J].
Ahmad, Fiaz ;
Qiu, Baijing ;
Dong, Xiaoya ;
Ma, Jing ;
Huang, Xin ;
Ahmed, Shibbir ;
Chandio, Farman Ali .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 172
[2]   Stability Analysis of a Sprayer UAV with a Liquid Tank with Different Outer Shapes and Inner Structures [J].
Ahmed, Shibbir ;
Xin, Huang ;
Faheem, Muhammad ;
Qiu, Baijing .
AGRICULTURE-BASEL, 2022, 12 (03)
[3]   A State-of-the-Art Analysis of Obstacle Avoidance Methods from the Perspective of an Agricultural Sprayer UAV's Operation Scenario [J].
Ahmed, Shibbir ;
Qiu, Baijing ;
Ahmad, Fiaz ;
Kong, Chun-Wei ;
Xin, Huang .
AGRONOMY-BASEL, 2021, 11 (06)
[4]   The LISA Pathfinder mission [J].
Antonucci, F. ;
Armano, M. ;
Audley, H. ;
Auger, G. ;
Benedetti, M. ;
Binetruy, P. ;
Bogenstahl, J. ;
Bortoluzzi, D. ;
Bosetti, P. ;
Brandt, N. ;
Caleno, M. ;
Canizares, P. ;
Cavalleri, A. ;
Cesa, M. ;
Chmeissani, M. ;
Conchillo, A. ;
Congedo, G. ;
Cristofolini, I. ;
Cruise, M. ;
Danzmann, K. ;
De Marchi, F. ;
Diaz-Aguilo, M. ;
Diepholz, I. ;
Dixon, G. ;
Dolesi, R. ;
Dunbar, N. ;
Fauste, J. ;
Ferraioli, L. ;
Ferrone, V. ;
Fichter, W. ;
Fitzsimons, E. ;
Freschi, M. ;
Marin, A. Garcia ;
Marirrodriga, C. Garcia ;
Gerndt, R. ;
Gesa, L. ;
Gilbert, F. ;
Giardini, D. ;
Grimani, C. ;
Grynagier, A. ;
Guillaume, B. ;
Guzman, F. ;
Harrison, I. ;
Heinzel, G. ;
Hernandez, V. ;
Hewitson, M. ;
Hollington, D. ;
Hough, J. ;
Hoyland, D. ;
Hueller, M. .
CLASSICAL AND QUANTUM GRAVITY, 2012, 29 (12)
[5]   Benefits from optimal route planning based on B-patterns [J].
Bochtis, Dionysis D. ;
Sorensen, Claus G. ;
Busato, Patrizia ;
Berruto, Remigio .
BIOSYSTEMS ENGINEERING, 2013, 115 (04) :389-395
[6]   Satellite Images-based Obstacle Recognition and Trajectory Generation for Agricultural Vehicles Regular Paper [J].
Bodur, Mehmet ;
Mehrolhassani, Moein .
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2015, 12
[7]   Adaptive Rigidity-Based Formation Control for Multirobotic Vehicles With Dynamics [J].
Cai, Xiaoyu ;
de Queiroz, Marcio .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (01) :389-396
[8]   Obstacle avoidance in a dynamic environment: A collision cone approach [J].
Chakravarthy, A ;
Ghose, D .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 1998, 28 (05) :562-574
[9]   Crop height monitoring with digital imagery from Unmanned Aerial System (UAS) [J].
Chang, Anjin ;
Jung, Jinha ;
Maeda, Murilo M. ;
Landivar, Juan .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 141 :232-237
[10]   Nitrogen Status Assessment for Variable Rate Fertilization in Maize through Hyperspectral Imagery [J].
Cilia, Chiara ;
Panigada, Cinzia ;
Rossini, Micol ;
Meroni, Michele ;
Busetto, Lorenzo ;
Amaducci, Stefano ;
Boschetti, Mirco ;
Picchi, Valentina ;
Colombo, Roberto .
REMOTE SENSING, 2014, 6 (07) :6549-6565