Radiation Therapy Quality Assurance Tasks and Tools: The Many Roles of Machine Learning

被引:48
作者
Kalet, Alan M. [1 ]
Luk, Samuel M. H. [1 ]
Phillips, Mark H. [1 ]
机构
[1] Univ Washington, Dept Radiat Oncol, Med Ctr, Seattle, WA 98195 USA
关键词
quality assurance; machine learning; artificial intelligence; radiotherapy; DECISION-SUPPORT-SYSTEMS; MODULATED ARC THERAPY; ERROR-DETECTION; CLINICAL-DATA; MISSING DATA; QA; PREDICTION; ONCOLOGY; CANCER; VERIFICATION;
D O I
10.1002/mp.13445
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The recent explosion in machine learning efforts in the quality assurance (QA) space has produced a variety of proofs-of-concept many with promising results. Expected outcomes of model implementation include improvements in planning time, plan quality, advanced dosimetric QA, predictive machine maintenance, increased safety checks, and developments key for new QA paradigms driven by adaptive planning. In this article, we outline several areas of research and discuss some of the unique challenges each area presents.
引用
收藏
页码:E168 / E177
页数:10
相关论文
共 80 条
[51]   Survey on deep learning for radiotherapy [J].
Meyer, Philippe ;
Noblet, Vincent ;
Mazzara, Christophe ;
Lallement, Alex .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 98 :126-146
[52]   Introduction to the DICOM standard [J].
Mildenberger, P ;
Eichelberg, M ;
Martin, E .
EUROPEAN RADIOLOGY, 2002, 12 (04) :920-927
[53]   THE POTENTIAL AND LIMITATIONS OF THE INVERSE RADIOTHERAPY TECHNIQUE [J].
MOHAN, R ;
WANG, XH ;
JACKSON, A ;
BORTFELD, T ;
BOYER, AL ;
KUTCHER, GJ ;
LEIBEL, SA ;
FUKS, Z ;
LING, CC .
RADIOTHERAPY AND ONCOLOGY, 1994, 32 (03) :232-248
[54]   Vision 20/20: Automation and advanced computing in clinical radiation oncology [J].
Moore, Kevin L. ;
Kagadis, George C. ;
McNutt, Todd R. ;
Moiseenko, Vitali ;
Mutic, Sasa .
MEDICAL PHYSICS, 2014, 41 (01)
[55]   Dose-volume histogram prediction using density estimation [J].
Munter, Johanna Skarpman ;
Sjolund, Jens .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (17) :6923-6936
[56]   The Needs and Benefits of Continuous Model Updates on the Accuracy of RT-Induced Toxicity Prediction Models Within a Learning Health System [J].
Nakatsugawa, Minoru ;
Cheng, Zhi ;
Kiess, Ana ;
Choflet, Amanda ;
Bowers, Michael ;
Utsunomiya, Kazuki ;
Sugiyama, Shinya ;
Wong, John ;
Quon, Harry ;
McNutt, Todd .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 103 (02) :460-467
[57]   Intensity-modulated radiation therapy for gynecologic cancers: Pitfalls, hazards, and cautions to be considered [J].
Randall, Marcus E. ;
Ibbott, Geoffrey S. .
SEMINARS IN RADIATION ONCOLOGY, 2006, 16 (03) :138-143
[58]   Evolving treatment plan quality criteria from institution-specific experience [J].
Ruan, D. ;
Shao, W. ;
DeMarco, J. ;
Tenn, S. ;
King, C. ;
Low, D. ;
Kupelian, P. ;
Steinberg, M. .
MEDICAL PHYSICS, 2012, 39 (05) :2708-2712
[59]   Missing data: Our view of the state of the art [J].
Schafer, JL ;
Graham, JW .
PSYCHOLOGICAL METHODS, 2002, 7 (02) :147-177
[60]   Big Data Readiness in Radiation Oncology: An Efficient Approach for Relabeling Radiation Therapy Structures With Their TG-263 Standard Name in Real-World Data Sets [J].
Schuler, Thilo ;
Kipritidis, John ;
Eade, Thomas ;
Hruby, George ;
Kneebone, Andrew ;
Perez, Mario ;
Grimberg, Kylie ;
Richardson, Kylie ;
Evill, Sally ;
Evans, Brooke ;
Gallego, Blanca .
ADVANCES IN RADIATION ONCOLOGY, 2019, 4 (01) :191-200