Radiation Therapy Quality Assurance Tasks and Tools: The Many Roles of Machine Learning

被引:42
作者
Kalet, Alan M. [1 ]
Luk, Samuel M. H. [1 ]
Phillips, Mark H. [1 ]
机构
[1] Univ Washington, Dept Radiat Oncol, Med Ctr, Seattle, WA 98195 USA
关键词
quality assurance; machine learning; artificial intelligence; radiotherapy; DECISION-SUPPORT-SYSTEMS; MODULATED ARC THERAPY; ERROR-DETECTION; CLINICAL-DATA; MISSING DATA; QA; PREDICTION; ONCOLOGY; CANCER; VERIFICATION;
D O I
10.1002/mp.13445
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The recent explosion in machine learning efforts in the quality assurance (QA) space has produced a variety of proofs-of-concept many with promising results. Expected outcomes of model implementation include improvements in planning time, plan quality, advanced dosimetric QA, predictive machine maintenance, increased safety checks, and developments key for new QA paradigms driven by adaptive planning. In this article, we outline several areas of research and discuss some of the unique challenges each area presents.
引用
收藏
页码:E168 / E177
页数:10
相关论文
共 80 条
  • [1] NCCN Guidelines® Insights Head and Neck Cancers, Version 2.2017
    Adelstein, David
    Gillison, Maura L.
    Pfister, David G.
    Spencer, Sharon
    Adkins, Douglas
    Brizel, David M.
    Burtness, Barbara
    Busse, Paul M.
    Caudell, Jimmy J.
    Cmelak, Anthony J.
    Colevas, A. Dimitrios
    Eisele, David W.
    Fenton, Moon
    Foote, Robert L.
    Gilbert, Jill
    Haddad, Robert I.
    Hicks, Wesley L., Jr.
    Hitchcock, Ying J.
    Jimeno, Antonio
    Leizman, Debra
    Lydiatt, William M.
    Maghami, Ellie
    Mell, Loren K.
    Mittal, Bharat B.
    Pinto, Harlan A.
    Ridge, John A.
    Rocco, James
    Rodriguez, Cristina P.
    Shah, Jatin P.
    Weber, Randal S.
    Witek, Matthew
    Worden, Frank
    Yom, Sue S.
    Zhen, Weining
    Burns, Jennifer L.
    Darlow, Susan D.
    [J]. JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2017, 15 (06): : 761 - 770
  • [2] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [3] [Anonymous], 2018, ARXIV180303453
  • [4] Towards the development of an error checker for radiotherapy treatment plans: a preliminary study
    Azmandian, Fatemeh
    Kaeli, David
    Dy, Jennifer G.
    Hutchinson, Elizabeth
    Ancukiewicz, Marek
    Niemierko, Andrzej
    Jiang, Steve B.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (21) : 6511 - 6524
  • [5] Bender D, 2013, COMP MED SY, P326, DOI 10.1109/CBMS.2013.6627810
  • [6] BERGER J, 1994, TENTH CONFERENCE ON ARTIFICIAL INTELLIGENCE FOR APPLICATIONS, PROCEEDINGS, P171, DOI 10.1109/CAIA.1994.323677
  • [7] A quantification of the effectiveness of EPID dosimetry and software-based plan verification systems in detecting incidents in radiotherapy
    Bojechko, Casey
    Phillps, Mark
    Kalet, Alan
    Ford, Eric C.
    [J]. MEDICAL PHYSICS, 2015, 42 (09) : 5363 - 5369
  • [8] Unintended Consequences of Machine Learning in Medicine
    Cabitza, Federico
    Rasoini, Raffaele
    Gensini, Gian Franco
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (06): : 517 - 518
  • [9] A machine learning approach to the accurate prediction of multi-leaf collimator positional errors
    Carlson, Joel N. K.
    Park, Jong Min
    Park, So-Yeon
    Park, Jong In
    Choi, Yunseok
    Ye, Sung-Joon
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (06) : 2514 - 2531
  • [10] Chan Maria F, 2015, Int J Med Phys Clin Eng Radiat Oncol, V4, P290