Combinatorial analogs of topological zeta functions

被引:5
|
作者
van der Veer, Robin [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
基金
比利时弗兰德研究基金会;
关键词
Matroid; Combinatorial blowup; Resolution of singularities; Topological zeta function; Hyperplane arrangement; Matroid chow ring;
D O I
10.1016/j.disc.2019.05.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we introduce a new matroid invariant, a combinatorial analog of the topological zeta function of a polynomial. More specifically we associate to any ranked, atomic meet-semilattice L a rational function Z(L)(s), in such a way that when L is the lattice of flats of a complex hyperplane arrangement we recover the usual topological zeta function. The definition is in terms of a choice of a combinatorial analog of resolutions of singularities, and the main result is that Z(L)(s) does not depend on this choice and depends only on L. Known properties of the topological zeta function provide a source of potential C-realisability test for matroids. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2680 / 2693
页数:14
相关论文
共 50 条