Propositional dynamic logic for Petri nets

被引:5
作者
Lopes, Bruno [1 ]
Benevides, Mario [2 ]
Haeusler, Edward Hermann [1 ]
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Informat, Rio De Janeiro, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Programa Engn Sistemas & Comp, Rio De Janeiro, RJ, Brazil
关键词
Dynamic logic; temporal logic; elementary net systems; Petri Nets; model checking; model synthesis; axiomatization of properties;
D O I
10.1093/jigpal/jzu010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Propositional Dynamic Logic (PDL) is a multi-modal logic used for specifying and reasoning on sequential programs. Petri Net is a widely used formalism to specify and to analyse concurrent programs with a very nice graphical representation. In this work, we propose a PDL to reasoning about Petri Nets. First we define a compositional encoding of Petri Nets from basic nets as terms. Second, we use these terms as PDL programs and provide a compositional semantics to PDL Formulas. Finally, we present an axiomatization and prove completeness w.r.t. our semantics. The advantage of our approach is that we can do reasoning about Petri Nets using our dynamic logic and we do not need to to translate it to other formalisms. Moreover our approach is compositional allowing for construction of complex nets using basic ones.
引用
收藏
页码:721 / 736
页数:16
相关论文
共 32 条
[1]  
ABRAHAMSON K, 1980, THESIS U WASHINGTON
[2]  
[Anonymous], 1962, COMMUN ACM
[3]  
Balbiani P., 2003, J APPL NONCLASSICAL, V13, P231, DOI DOI 10.3166/JANCL.13.231-276
[4]   A Propositional Dynamic Logic for CCS programs [J].
Benevides, Mario R. F. ;
Schechter, L. Menasche .
LOGIC, LANGUAGE, INFORMATION AND COMPUTATION, 2008, 5110 :83-97
[5]  
de Almeida E. S., 1999, PETRI NET NEWSLETTER, V57, P23
[6]  
DEGIACOMO G, 1994, PROCEEDINGS OF THE TWELFTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, P205
[7]   DAL - A LOGIC FOR DATA-ANALYSIS [J].
DELCERRO, LF ;
ORLOWSKA, E .
THEORETICAL COMPUTER SCIENCE, 1985, 36 (2-3) :251-264
[8]  
Fagin R., 1995, Reasoning about Knowledge
[9]   PROPOSITIONAL DYNAMIC LOGIC OF REGULAR PROGRAMS [J].
FISCHER, MJ ;
LADNER, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1979, 18 (02) :194-211
[10]  
Gargov G., 1990, Mathematical Logic, P299, DOI [DOI 10.1007/978-1-4613-0609-2_21, 10.1007/978-1-4613-0609-221, DOI 10.1007/978-1-4613-0609-221]