Dissecting docking and tethering of secretory vesicles at the target membrane

被引:135
|
作者
Toonen, Ruud F.
Kochubey, Olexiy
de Wit, Heidi
Gulyas-Kovacs, Attila
Konijnenburg, Bas
Sorensen, Jakob B. [1 ]
Klingauf, Jurgen
Verhage, Matthijs
机构
[1] Max Planck Inst Biophys Chem, Dept Membrane Biophys, D-37077 Gottingen, Germany
[2] VUA, CNCR, Dept Funct Genom, Amsterdam, Netherlands
[3] VUMC, Amsterdam, Netherlands
来源
EMBO JOURNAL | 2006年 / 25卷 / 16期
关键词
chromaffin; docking; exocytosis; Munc18-1; SNARE;
D O I
10.1038/sj.emboj.7601256
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Secretory vesicles dock at their target in preparation for fusion. Using single-vesicle total internal reflection fluorescence microscopy in chromaffin cells, we show that most approaching vesicles dock only transiently, but that some are captured by at least two different tethering modes, weak and strong. Both vesicle delivery and tethering depend on Munc18-1, a known docking factor. By decreasing the amount of cortical actin by Latrunculin A application, morphological docking can be restored artificially in docking-deficient munc18-1 null cells, but neither strong tethering nor fusion, demonstrating that morphological docking is not sufficient for secretion. Deletion of the t-SNARE and Munc18-1 binding partner syntaxin, but not the v-SNARE synaptobrevin/VAMP, also reduces strong tethering and fusion. We conclude that docking vesicles either undock immediately or are captured by minimal tethering machinery and converted in a munc18-1/syntaxin-dependent, strongly tethered, fusion-competent state.
引用
收藏
页码:3725 / 3737
页数:13
相关论文
共 50 条
  • [31] INVITRO RECONSTITUTION OF EXOCYTOSIS FROM PLASMA-MEMBRANE AND ISOLATED SECRETORY VESICLES
    CRABB, JH
    JACKSON, RC
    JOURNAL OF CELL BIOLOGY, 1985, 101 (06): : 2263 - 2273
  • [32] Membrane-Proximal Tryptophans of Synaptobrevin II Stabilize Priming of Secretory Vesicles
    Borisovska, Maria
    Schwarz, Yvonne N.
    Dhara, Madhurima
    Yarzagaray, Antonio
    Hugo, Sandra
    Narzi, Daniele
    Siu, Shirley W. I.
    Kesavan, Jaideep
    Mohrmann, Ralf
    Boeckmann, Rainer A.
    Bruns, Dieter
    JOURNAL OF NEUROSCIENCE, 2012, 32 (45): : 15983 - 15997
  • [33] MEMBRANE-FUSION OF SECRETORY VESICLES AND LIPOSOMES 2 DIFFERENT TYPES OF FUSION
    EKERDT, R
    DAHL, G
    GRATZL, M
    BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 646 (01) : 10 - 22
  • [34] HYPOTHESIS - AN INCREASE IN OSMOLARITY OF SECRETORY VESICLES TRIGGERS EXOCYTOSIS BY REDUCING THE DISTANCE BETWEEN VESICLES AND THE PLASMA-MEMBRANE
    EHRENSTEIN, G
    STANLEY, E
    BIOPHYSICAL JOURNAL, 1988, 53 (02) : A10 - A10
  • [35] Tethering assays for COPI vesicles mediated by golgins
    Satoh, A
    Malsam, J
    Warren, G
    GTPASES REGULATING MEMBRANE DYNAMICS, 2005, 404 : 125 - 134
  • [36] In vitro fusion between Saccharomyces cerevisiae secretory vesicles and cytoplasmic-side-out plasma membrane vesicles
    Arrastua, L
    San Sebastian, E
    Quincoces, AF
    Antony, C
    Ugalde, U
    BIOCHEMICAL JOURNAL, 2003, 370 : 641 - 649
  • [37] Recognition and tethering of transport vesicles at the Golgi apparatus
    Witkos, Tomasz M.
    Lowe, Martin
    CURRENT OPINION IN CELL BIOLOGY, 2017, 47 : 16 - 23
  • [38] An active tethering mechanism controls the fate of vesicles
    Seong J. An
    Felix Rivera-Molina
    Alexander Anneken
    Zhiqun Xi
    Brian McNellis
    Vladimir I. Polejaev
    Derek Toomre
    Nature Communications, 12
  • [39] An active tethering mechanism controls the fate of vesicles
    An, Seong J.
    Rivera-Molina, Felix
    Anneken, Alexander
    Xi, Zhiqun
    McNellis, Brian
    Polejaev, Vladimir, I
    Toomre, Derek
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [40] A Tethering Complex Recruits SNAREs and Grabs Vesicles
    Schmitt, Hans Dieter
    Jahn, Reinhard
    CELL, 2009, 139 (06) : 1053 - 1055