Dissecting docking and tethering of secretory vesicles at the target membrane

被引:135
|
作者
Toonen, Ruud F.
Kochubey, Olexiy
de Wit, Heidi
Gulyas-Kovacs, Attila
Konijnenburg, Bas
Sorensen, Jakob B. [1 ]
Klingauf, Jurgen
Verhage, Matthijs
机构
[1] Max Planck Inst Biophys Chem, Dept Membrane Biophys, D-37077 Gottingen, Germany
[2] VUA, CNCR, Dept Funct Genom, Amsterdam, Netherlands
[3] VUMC, Amsterdam, Netherlands
来源
EMBO JOURNAL | 2006年 / 25卷 / 16期
关键词
chromaffin; docking; exocytosis; Munc18-1; SNARE;
D O I
10.1038/sj.emboj.7601256
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Secretory vesicles dock at their target in preparation for fusion. Using single-vesicle total internal reflection fluorescence microscopy in chromaffin cells, we show that most approaching vesicles dock only transiently, but that some are captured by at least two different tethering modes, weak and strong. Both vesicle delivery and tethering depend on Munc18-1, a known docking factor. By decreasing the amount of cortical actin by Latrunculin A application, morphological docking can be restored artificially in docking-deficient munc18-1 null cells, but neither strong tethering nor fusion, demonstrating that morphological docking is not sufficient for secretion. Deletion of the t-SNARE and Munc18-1 binding partner syntaxin, but not the v-SNARE synaptobrevin/VAMP, also reduces strong tethering and fusion. We conclude that docking vesicles either undock immediately or are captured by minimal tethering machinery and converted in a munc18-1/syntaxin-dependent, strongly tethered, fusion-competent state.
引用
收藏
页码:3725 / 3737
页数:13
相关论文
共 50 条
  • [21] Bacterial outer membrane vesicles (OMVs): Dissecting the delivery process to host cells
    Schromm, Andra
    Christian, Leonard
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1): : S156 - S156
  • [22] Docking and Fast Fusion of Synaptobrevin Vesicles Depends on the Lipid Compositions of the Vesicle and the Acceptor SNARE Complex-Containing Target Membrane
    Domanska, Marta K.
    Kiessling, Volker
    Tamm, Lukas K.
    BIOPHYSICAL JOURNAL, 2010, 99 (09) : 2936 - 2946
  • [23] A common molecular basis for membrane docking and functional priming of synaptic vesicles
    Siksou, Lea
    Varoqueaux, Frederique
    Pascual, Olivier
    Triller, Antoine
    Brose, Nils
    Marty, Serge
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2009, 30 (01) : 49 - 56
  • [24] Phospholipase D1 localizes to mobile, docking and fusing secretory vesicles and multivesicular endosomes
    Bills, Broderick L.
    Hulser, Megan
    Knowles, Michelle K.
    BIOPHYSICAL JOURNAL, 2023, 122 (03) : 513A - 513A
  • [25] BIOENERGETICS OF SECRETORY VESICLES
    NJUS, D
    KELLEY, PM
    HARNADEK, GJ
    BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 853 (3-4) : 237 - 265
  • [26] Swelling of secretory vesicles
    Florin, EL
    Hörber, H
    Jena, BP
    MOLECULAR BIOLOGY OF THE CELL, 1999, 10 : 84A - 84A
  • [27] VESICLES CONTAINING NEWLY SYNTHESIZED SECRETORY PRODUCT AND MEMBRANE APPEAR TO BE RELEASED FROM LATE STEPS IN THE SECRETORY PATHWAY
    KULIAWAT, R
    BULERA, S
    PHILLIPS, A
    FEDERATION PROCEEDINGS, 1987, 46 (06) : 2106 - 2106
  • [28] COATED VESICLES ARE IMPLICATED IN THE POSTFUSION RETRIEVAL OF THE MEMBRANE OF RAT ATRIAL SECRETORY GRANULES
    NEWMAN, TM
    SEVERS, NJ
    CELL AND TISSUE RESEARCH, 1992, 268 (03) : 463 - 469
  • [29] Secretory vesicles membrane area is regulated in tandem with quantal size in chromaffin cells
    Gong, LW
    Hafez, I
    de Toledo, GA
    Lindau, M
    JOURNAL OF NEUROSCIENCE, 2003, 23 (21): : 7917 - 7921
  • [30] Secretory Vesicles Targeted to Plasma Membrane During Pollen Germination and Tube Growth
    Ruan, Huaqiang
    Li, Jiang
    Wang, Ting
    Ren, Haiyun
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 8