Tunable-cavity QED with phase qubits

被引:27
作者
Whittaker, J. D. [1 ]
da Silva, F. C. S. [1 ]
Allman, M. S. [1 ]
Lecocq, F. [1 ]
Cicak, K. [1 ]
Sirois, A. J. [1 ]
Teufel, J. D. [1 ]
Aumentado, J. [1 ]
Simmonds, R. W. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
来源
PHYSICAL REVIEW B | 2014年 / 90卷 / 02期
关键词
SUPERCONDUCTING CIRCUITS; JOSEPHSON-JUNCTION; QUANTUM PROCESSOR; STATE;
D O I
10.1103/PhysRevB.90.024513
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a tunable-cavity quantum electrodynamics (QED) architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both microwave readout of tunneling and dispersive measurements of the qubit. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling, and detuning. A tunable-cavity frequency provides a way to strongly vary both the qubit-cavity detuning and coupling strength, which can reduce Purcell losses, cavity-induced dephasing of the qubit, and residual bus coupling for a system with multiple qubits. With our qubit-cavity system, we show that dynamic control over the cavity frequency enables one to avoid Purcell losses during coherent qubit evolutions and optimize state readout during qubit measurements. The maximum qubit decay time T-1 = 1.5 mu s is found to be limited by surface dielectric losses from a design geometry similar to planar transmon qubits.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Tunable interfaces for realizing universal quantum computation with topological qubits
    Xue, Zheng-Yuan
    Shao, L. B.
    Hu, Yong
    Zhu, Shi-Liang
    Wang, Z. D.
    PHYSICAL REVIEW A, 2013, 88 (02):
  • [42] Robust hyperparallel photonic quantum entangling gate with cavity QED
    Ren, Bao-Cang
    Deng, Fu-Guo
    OPTICS EXPRESS, 2017, 25 (10): : 10863 - 10873
  • [43] Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED
    Song, Li-Cong
    Xia, Yan
    Song, Jie
    QUANTUM INFORMATION PROCESSING, 2015, 14 (02) : 511 - 529
  • [44] Implementation of a many-qubit Grover search by cavity QED
    Fan Hao-Quan
    Yang Wan-Li
    Huang Xue-Ren
    Feng Mang
    CHINESE PHYSICS B, 2009, 18 (11) : 4893 - 4900
  • [45] Atom-field entanglement in cavity QED: Nonlinearity and saturation
    Rogers, Robert
    Cummings, Nick
    Pedrotti, Leno M.
    Rice, Perry
    PHYSICAL REVIEW A, 2017, 96 (05)
  • [46] Demonstration of Tunable Three-Body Interactions between Superconducting Qubits
    Menke, Tim
    Banner, William P.
    Bergamaschi, Thomas R.
    Di Paolo, Agustin
    Vepsalainen, Antti
    Weber, Steven J.
    Winik, Roni
    Melville, Alexander
    Niedzielski, Bethany M.
    Rosenberg, Danna
    Serniak, Kyle
    Schwartz, Mollie E.
    Yoder, Jonilyn L.
    Aspuru-Guzik, Alan
    Gustavsson, Simon
    Grover, Jeffrey A.
    Hirjibehedin, Cyrus F.
    Kerman, Andrew J.
    Oliver, William D.
    PHYSICAL REVIEW LETTERS, 2022, 129 (22)
  • [47] Fast quantum information transfer with superconducting flux qubits coupled to a cavity
    Yang, Chui-Ping
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (20)
  • [48] Atomic entanglement concentration via photonic Faraday rotation in cavity QED
    Xiu, Xiao-ming
    Zhao, Zi-lin
    Wang, Xin-ying
    Yuan, Zi-qing
    Li, Jiu-ming
    Ji, Yan-qiang
    Dong, Li
    OPTICS EXPRESS, 2024, 32 (26): : 45761 - 45773
  • [49] Influence of the Stark Shift on Entanglement Sudden Death and Birth in Cavity QED
    Zhang Jian-Song
    Chen Ai-Xi
    Wu Kun-Hua
    CHINESE PHYSICS LETTERS, 2011, 28 (01)
  • [50] High-Contrast Qubit Interactions Using Multimode Cavity QED
    Mckay, David C.
    Naik, Ravi
    Reinhold, Philip
    Bishop, Lev S.
    Schuster, David I.
    PHYSICAL REVIEW LETTERS, 2015, 114 (08)